Citation:
SHAO Yan, OUYANG Fang-Ping, PENG Sheng-Lin, LIU Qi, JIA Zhi-An, ZOU Hui. First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons[J]. Acta Physico-Chimica Sinica,
;2015, 31(11): 2083-2090.
doi:
10.3866/PKU.WHXB201510132
-
We investigated the electronic properties of armchair MoS2 nanoribbons with vacancy defects using a first-principles method based on density functional theory. It was found that defects reduced the stability of armchair MoS2 nanoribbons. Mo vacancies and MoS2 triple vacancies can both change the band structures of nanoribbons from semiconductor to metallic, whereas S vacancies, 2S divacancies, and MoS divacancies only decrease the bandgap. The densities of states and eigenstates of the nanoribbons indicated that impurity bands near the Fermi level basically contributed to the defect states. The relationships between the bandgap and width of four types of semiconducting nanoribbons were simulated. Nanoribbons with no defects have a bandgap that oscillates with width in a period of three, but the bandgap changes nonperiodically for nanoribbons with S vacancies, 2S divacancies, and MoS divacancies. We also found that when the concentration of defects decreased, the vacancy defects did not destroy the nanoribbon semiconducting behavior but only decreased the bandgap. These results open up possibilities for MoS2 nanoribbon applications in novel nanoelectronic devices.
-
-
-
[1]
(1) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7 (11), 699. doi: 10.1038/nnano.2012.193
-
[2]
(2) Kuc, A.; Zibouche, N.; Heine, T. Phys. Rev. B 2011, 83 (24), 245213. doi: 10.1103/Physrevb.83.245213
-
[3]
(3) Lebegue, S.; Eriksson, O. Phys. Rev. B 2009, 79 (11), 115409. doi: 10.1103/Physrev.79.115409
-
[4]
(4) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13), 136805. doi: 10.1103/Physrevlett. 105.136805
-
[5]
(5) He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. ACS Nano 2011, 5 (6), 5038. doi: 10.1021/nn201118c
-
[6]
(6) Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem. Int. Edit. 2011, 50 (47), 11093. doi: 10.1002/anie.201106004
-
[7]
(7) Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-Zadeh, K. Nanoscale 2012, 4 (2), 461. doi: 10.1039/c1nr10803d
-
[8]
(8) Benameur, M. M.; Radisavljevic, B.; Heron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Nanotechnology 2011, 22 (12), 125706. doi: 10.1088/0957-4484/22/12/125706
-
[9]
(9) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano. 2010.279
-
[10]
(10) Feng, W. X.; Yao, Y. G.; Zhu, W. G.; Zhou, J. J.; Yao, W.; Xiao, D. Phys. Rev. B 2012, 86 (16), 165108. doi: 10.1103/Physrevb.86.165108
-
[11]
(11) Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Lu, J. B.; Huang, B. B. Phys. Chem. Chem. Phys. 2011, 13 (34), 15546. doi: 10.1039/c1cp21159e
-
[12]
(12) Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7 (4), 2898. doi: 10.1021/nn400280c
-
[13]
(13) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490 (7419), 192. doi: 10.1038/nature11458
-
[14]
(14) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112 (11), 6156. doi: 10.1021/cr3000412
-
[15]
(15) Jiang, X. W.; Li, S. S. Appl. Phys. Lett. 2014, 104 (19), 193510. doi: 10.1063/1.4878515
-
[16]
(16) Li, Q.; Newberg, J. T.; Walter, E. C.; Hemminger, J. C.; Penner, R. M. Nano Lett. 2004, 4 (2), 277. doi: 10.1021/nl035011f
-
[17]
(17) Wang, Z. Y.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Gu, Z. N.; Zhou, J.; Gao, Z. X.; Li, G. P.; Sanvito, S.; Wang, E. G.; Iijima, S. J. Am. Chem. Soc. 2010, 132 (39), 13840. doi: 10.1021/ja1058026
-
[18]
(18) Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. Nat. Nanotechnol. 2013, 8 (2), 100. doi: 10.1038/Nnano.2012.224
-
[19]
(19) Kou, L. Z.; Tang, C.; Zhang, Y.; Heine, T.; Chen, C. F.; Frauenheim, T. J. Phys. Chem. Lett. 2012, 3 (20), 2934. doi: 10.1021/jz301339e
-
[20]
(20) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. J. Am. Chem. Soc. 2013, 135 (28), 10274. doi: 10.1021/ja404523s
-
[21]
(21) Wei, J. W.; Ma, Z. W.; Zeng, H.; Wang, Z. Y.; Wei, Q.; Peng, P. AIP Adv. 2012, 2 (4), 042141. doi: 10.1063/1.4768261
-
[22]
(22) Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Phys. Rev. B 2013, 87 (3), 035423. doi: 10.1103/Physrevb.87.035423
-
[23]
(23) Li, T. S. Phys. Rev. B 2012, 85 (23), 235407. doi: 10.1103/Physrevb.85.235407
-
[24]
(24) Li, J. W.; Medhekar, N. V.; Shenoy, V. B. J. Phys. Chem. C 2013, 117 (30), 15842. doi: 10.1021/jp403986v
-
[25]
(25) Shidpour, R.; Manteghian, M. Nanoscale 2010, 2 (8), 1429. doi: 10.1039/b9nr00368a
-
[26]
(26) Li, X. M.; Long, M. Q.; Cui, L. L.; Xiao, J.; Xu, H. Chin. Phys. B 2014, 23 (4), 047307. doi: 10.1088/1674-1056/23/4/047307
-
[27]
(27) Jiang, X. W.; Gong, J.; Xu, N.; Li, S. S.; Zhang, J. F.; Hao, Y.; Wang, L. W. Appl. Phys. Lett. 2014, 104 (2), 023512. doi: 10.1063/1.4862667
-
[28]
(28) Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. J. Am. Chem. Soc. 2008, 130 (49), 16739. doi: 10.1021/ja805545x
-
[29]
(29) Ouyang, F. P.; Xu, H.; Wei, C. Acta Phys. Sin. 2008, 57, 1073. [欧阳方平, 徐慧, 魏辰. 物理学报, 2008, 57, 1073.]
-
[1]
-
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[3]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[4]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[5]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[6]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[7]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[8]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[9]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[10]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[11]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[12]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[13]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[14]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[15]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[16]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[17]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[18]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[19]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[20]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[1]
Metrics
- PDF Downloads(41)
- Abstract views(511)
- HTML views(35)