Citation: SHAO Yan, OUYANG Fang-Ping, PENG Sheng-Lin, LIU Qi, JIA Zhi-An, ZOU Hui. First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2083-2090. doi: 10.3866/PKU.WHXB201510132 shu

First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons

  • Corresponding author: OUYANG Fang-Ping,  ZOU Hui, 
  • Received Date: 7 May 2015
    Available Online: 8 October 2015

    Fund Project: 国家自然科学基金(51272291, 21103232, 11104356) (51272291, 21103232, 11104356) 湖南省杰出青年科学基金项目(2015JJ1020) (2015JJ1020) 粉末冶金国家重点实验室科研课题重点项目(2014091907) (2014091907)中南大学教师研究基金(2013JSJJ022)资助项目 (2013JSJJ022)

  • We investigated the electronic properties of armchair MoS2 nanoribbons with vacancy defects using a first-principles method based on density functional theory. It was found that defects reduced the stability of armchair MoS2 nanoribbons. Mo vacancies and MoS2 triple vacancies can both change the band structures of nanoribbons from semiconductor to metallic, whereas S vacancies, 2S divacancies, and MoS divacancies only decrease the bandgap. The densities of states and eigenstates of the nanoribbons indicated that impurity bands near the Fermi level basically contributed to the defect states. The relationships between the bandgap and width of four types of semiconducting nanoribbons were simulated. Nanoribbons with no defects have a bandgap that oscillates with width in a period of three, but the bandgap changes nonperiodically for nanoribbons with S vacancies, 2S divacancies, and MoS divacancies. We also found that when the concentration of defects decreased, the vacancy defects did not destroy the nanoribbon semiconducting behavior but only decreased the bandgap. These results open up possibilities for MoS2 nanoribbon applications in novel nanoelectronic devices.
  • 加载中
    1. [1]

      (1) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7 (11), 699. doi: 10.1038/nnano.2012.193

    2. [2]

      (2) Kuc, A.; Zibouche, N.; Heine, T. Phys. Rev. B 2011, 83 (24), 245213. doi: 10.1103/Physrevb.83.245213

    3. [3]

      (3) Lebegue, S.; Eriksson, O. Phys. Rev. B 2009, 79 (11), 115409. doi: 10.1103/Physrev.79.115409

    4. [4]

      (4) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13), 136805. doi: 10.1103/Physrevlett. 105.136805

    5. [5]

      (5) He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. ACS Nano 2011, 5 (6), 5038. doi: 10.1021/nn201118c

    6. [6]

      (6) Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem. Int. Edit. 2011, 50 (47), 11093. doi: 10.1002/anie.201106004

    7. [7]

      (7) Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-Zadeh, K. Nanoscale 2012, 4 (2), 461. doi: 10.1039/c1nr10803d

    8. [8]

      (8) Benameur, M. M.; Radisavljevic, B.; Heron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Nanotechnology 2011, 22 (12), 125706. doi: 10.1088/0957-4484/22/12/125706

    9. [9]

      (9) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano. 2010.279

    10. [10]

      (10) Feng, W. X.; Yao, Y. G.; Zhu, W. G.; Zhou, J. J.; Yao, W.; Xiao, D. Phys. Rev. B 2012, 86 (16), 165108. doi: 10.1103/Physrevb.86.165108

    11. [11]

      (11) Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Lu, J. B.; Huang, B. B. Phys. Chem. Chem. Phys. 2011, 13 (34), 15546. doi: 10.1039/c1cp21159e

    12. [12]

      (12) Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7 (4), 2898. doi: 10.1021/nn400280c

    13. [13]

      (13) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490 (7419), 192. doi: 10.1038/nature11458

    14. [14]

      (14) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112 (11), 6156. doi: 10.1021/cr3000412

    15. [15]

      (15) Jiang, X. W.; Li, S. S. Appl. Phys. Lett. 2014, 104 (19), 193510. doi: 10.1063/1.4878515

    16. [16]

      (16) Li, Q.; Newberg, J. T.; Walter, E. C.; Hemminger, J. C.; Penner, R. M. Nano Lett. 2004, 4 (2), 277. doi: 10.1021/nl035011f

    17. [17]

      (17) Wang, Z. Y.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Gu, Z. N.; Zhou, J.; Gao, Z. X.; Li, G. P.; Sanvito, S.; Wang, E. G.; Iijima, S. J. Am. Chem. Soc. 2010, 132 (39), 13840. doi: 10.1021/ja1058026

    18. [18]

      (18) Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. Nat. Nanotechnol. 2013, 8 (2), 100. doi: 10.1038/Nnano.2012.224

    19. [19]

      (19) Kou, L. Z.; Tang, C.; Zhang, Y.; Heine, T.; Chen, C. F.; Frauenheim, T. J. Phys. Chem. Lett. 2012, 3 (20), 2934. doi: 10.1021/jz301339e

    20. [20]

      (20) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. J. Am. Chem. Soc. 2013, 135 (28), 10274. doi: 10.1021/ja404523s

    21. [21]

      (21) Wei, J. W.; Ma, Z. W.; Zeng, H.; Wang, Z. Y.; Wei, Q.; Peng, P. AIP Adv. 2012, 2 (4), 042141. doi: 10.1063/1.4768261

    22. [22]

      (22) Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Phys. Rev. B 2013, 87 (3), 035423. doi: 10.1103/Physrevb.87.035423

    23. [23]

      (23) Li, T. S. Phys. Rev. B 2012, 85 (23), 235407. doi: 10.1103/Physrevb.85.235407

    24. [24]

      (24) Li, J. W.; Medhekar, N. V.; Shenoy, V. B. J. Phys. Chem. C 2013, 117 (30), 15842. doi: 10.1021/jp403986v

    25. [25]

      (25) Shidpour, R.; Manteghian, M. Nanoscale 2010, 2 (8), 1429. doi: 10.1039/b9nr00368a

    26. [26]

      (26) Li, X. M.; Long, M. Q.; Cui, L. L.; Xiao, J.; Xu, H. Chin. Phys. B 2014, 23 (4), 047307. doi: 10.1088/1674-1056/23/4/047307

    27. [27]

      (27) Jiang, X. W.; Gong, J.; Xu, N.; Li, S. S.; Zhang, J. F.; Hao, Y.; Wang, L. W. Appl. Phys. Lett. 2014, 104 (2), 023512. doi: 10.1063/1.4862667

    28. [28]

      (28) Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. J. Am. Chem. Soc. 2008, 130 (49), 16739. doi: 10.1021/ja805545x

    29. [29]

      (29) Ouyang, F. P.; Xu, H.; Wei, C. Acta Phys. Sin. 2008, 57, 1073. [欧阳方平, 徐慧, 魏辰. 物理学报, 2008, 57, 1073.]

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(41)
  • Abstract views(458)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return