Citation: LI Jing, CHEN Li-Zhen, WANG Jian-Long, LAN Guan-Chao, HOU Huan, LI Man. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3,5-Dinitro-1-oxygen-3,5-diazacyclohexane[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2049-2056. doi: 10.3866/PKU.WHXB201510092 shu

Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3,5-Dinitro-1-oxygen-3,5-diazacyclohexane

  • Corresponding author: WANG Jian-Long, 
  • Received Date: 16 July 2015
    Available Online: 8 October 2015

    Fund Project: 国家自然科学基金(11447219) (11447219)

  • A new cyclic byproduct was formed during hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) preparation by direct nitration. Silicone column chromatography with acetone and dichloromethane in various ratios as the eluent was used to separate 3,5-dinitro-1-oxygen-3,5-diazacyclohexane from the product mixture. A single crystal of 3,5-dinitro-1-oxygen-3,5-diazacyclohexane was grown from acetone, and characterized using elemental analysis, Fourier-transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). Its structure was determined using an X-ray single-crystal diffractometer. The results indicate that the crystal molecular weight is 178.12. It belongs to the monoclinic system with the space group P121/n1, a = 0.58128(13) nm, b = 1.72389(14) nm, c = 0.71072(6) nm, β = 112.056°, V = 0.66006(16) nm3, Z = 4, DC= 1.792 g·cm-3, μ = 0.17 mm-1, and F(000) = 368.0; the final deviation factor R is 0.0397. Differential scanning calorimetrythermogravimetry (DSC-TG) was used to investigate the thermal behavior of the title compound. Sharp peaks were observed at 383.15 K (melting) and 519.05 K (decomposition). The kinetic parameters were obtained using the Kissinger and Flynn-Wall-Ozawa methods and the TG data at different heating rates. The Coats-Redfern method was used to study the thermal decomposition mechanism of 3,5-dinitro-1-oxygen-3,5-diazacyclohexane. The results show that the title compound is a low-melting-point compound with good stability; its apparent activation energy and pre-exponential factor, calculated using the Kissinger equation, are 212.32 kJ·mol-1 and 6.20×1020 s-1, respectively. The apparent activation energy, calculated using the Flynn-Wall-Ozawa equation, is 210.39 kJ·mol-1. G(α) = (1-α)-1-1 (n = 2) obtained using Coats-Redfern method is regarded as the most appropriate thermal decomposition kinetic equation.
  • 加载中
    1. [1]

      (1) Ren, T. S. Chemistry and Technology of Nitramine and Nitrate Explosives; Ordnance Industry Press: Beijing, 1994; pp 27-41. [任特生. 硝胺及硝酸酯炸药化学与工艺学. 北京: 兵器工业出版社, 1994: 27-41.]

    2. [2]

      (2) Bachmann, W. E. J. Am. Chem. Soc. 1949, 71 (5), 1842. doi: 10.1021/ja01173a092

    3. [3]

      (3) Duiming, W. J.; Millard, B.; Nutt, C. W. J. Chem. Soc. 1952, 1264.

    4. [4]

      (4) Willson, F. G.; Forster, A.; Rorberts, E. Cyclo-Trimethyle-netrinitramine. US, 2525252, 1950-10-10.

    5. [5]

      (5) Agrawal, J. P.; Hodgson, R. D. J. Hazard. Mater. 2007, 1-2 (146), 431.

    6. [6]

      (6) Wang, Q. L. Ammonium Nitrate Explosive; National Defense Industry Press: Beijing, 1984; p 150. [王起来. 硝铵炸药. 北京: 国防工业出版社, 1984: 150.]

    7. [7]

      (7) Yu, X. H. Discussion about Nitrolysis Method of RDX. In Conference Proceedings on China Material Seminar, China Material Seminar, Beijing, 2002. [余咸旱. 关于黑索今硝解方法的探讨. 2002年中国材料研讨会论文集. 北京: 中国材料研究会, 2002.]

    8. [8]

      (8) Gilpin, V.; Winkler, C. A. Can. J. Chem. 1952, 10 (30), 743.

    9. [9]

      (9) Bell, J. A.; Dunstan, I. J. Chem. Soc. 1969, 11 (5), 1559.

    10. [10]

      (10) Fang, Z. J.; Wang, S. F.; Chen, J.; Li, F. P. Chin. J. Explos. Propell. 1992, No. 1, 45. [方志杰, 王绍芳, 陈驹, 李福平. 火炸药学报, 1992, No. 1, 45.]

    11. [11]

      (11) He, Z. Y.; Luo, J.; Lü , C. X.; Wang, P.; Xu, R.; Li, J. S. J. Energ. Mater. 2012, 20 (1), 5. [何志勇, 罗军, 吕春绪, 汪平, 徐蓉, 李金山. 含能材料, 2012, 20 (1), 5.]

    12. [12]

      (12) Song, H. Y.; Wang, P.; Qin, G. M.; Ge, Z. X.; Wang, B. Z.; Meng, Z. H.; Li, Q. X. Chin. J. Org. Chem. 2010, 30 (3), 414. [宋红燕, 王鹏, 覃光明, 葛忠学, 王伯周, 孟子晖, 李清霞. 有机化学, 2010, 30 (3), 414.]

    13. [13]

      (13) Yu, B. Study of Nitrolysis Mechanism during RDX Synthesis by Direct Nitration in Acid Ionic Liquid. M. S. Dissertation, Nanjing University of Science & Technology, Nanjing, 2009. [郁波. 酸性离子液体催化下直接法合成黑索金及硝解机理研究[D]. 南京: 南京理工大学, 2009.]

    14. [14]

      (14) Shen, Y.; Li, Y. X.; Gao, Z. Q.; Tan, Q. Q.; Wang, J. L.; Cao, D. L. Chem. Ind. Eng. Prog. 2014, 33 (4), 1041. [沈勇, 李永祥, 高志强, 谭情请, 王建龙, 曹端林. 化工进展, 2014, 33 (4), 1041.]

    15. [15]

      (15) Fang, Z. J.; Wang, S. F.; Chen, J.; Chen, L.; Li, F. P. Chin. J. Explos. Propell. 1992, No. 3, 1. [方志杰, 王绍芳, 陈驹, 陈里, 李福平. 火炸药学报, 1992, No. 3, 1.]

    16. [16]

      (16) Zuo, J. Q. Solving and Analysis of Activation Energy in Thermal Analysis. M. S. Dissertation, Nanjing University of Science & Technology, Nanjing, 2006. [左金琼. 热分析中活化能的求解与分析[D]. 南京: 南京理工大学, 2006.]

    17. [17]

      (17) Liu, Z. H. Introduction to Thermal Analysis, 1st ed.; Chemical Industry Press: Beijing, 1991. [刘振海. 热分析导论[M]. 第一版. 北京: 化学工业出版社, 1991.]

    18. [18]

      (18) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Refinement; Gö ttingen University: Germany, 1997.

    19. [19]

      (19) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution; Gö ttingen University: Germany, 1997.

    20. [20]

      (20) Gotor, F. J.; Criado, J. M. Thermochim. Acta 2002, 383 (1-2), 53. doi: 10.1016/S0040-6031(01)00658-X

    21. [21]

      (21) Choi, C. S.; Prince, E. Acta Crystallogr. B 1972, No. 28, 2857.

    22. [22]

      (22) Kissinger, H. E. Anal. Chem. 1957, 29 (11), 1702. doi: 10.1021/ac60131a045

    23. [23]

      (23) Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38 (11), 1881. doi: 10.1246/bcsj.38.1881

    24. [24]

      (24) Schawe, J. E. K. Thermochim. Acta 2002, 388 (1-2), 299. doi: 10.1016/S0040-6031(02)00041-2

    25. [25]

      (25) Coats, A. W.; Redfern, J. P. Nature 1964, 201 (4914), 68. doi: 10.1038/201068a0

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(45)
  • Abstract views(437)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return