Citation:
XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Physico-Chimica Sinica,
;2015, 31(11): 2158-2164.
doi:
10.3866/PKU.WHXB201510091
-
CeO2 promoted CuCl/activated carbon (AC) adsorbents were prepared using an incipient wetness impregnation method, and characterized using N2 adsorption/desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The Cu(II) on the AC surface was reduced to Cu(I) when calcination was performed in a nitrogen flow. The effects of Ce on the C2H4/C2H6 adsorptive separation performance were investigated. The adsorption isotherms showed that the addition of CeO2 improved the separation performance by decreasing the C2H6 adsorption capacity compared with that of the nonpromoted sample. The XRD and XPS results indicated that the active crystal particles on the AC surface became smaller, leading to higher dispersion and a higher degree of Cu(II) reduction. The best adsorption selectivity was obtained using the 5Ce50Cu [CeO2 and CuCl2 mass fractions (w) 5% and 50%, respectively] sample, i.e., with CeO2 in the adsorbent; the adsorption selectivity increased from 4.2 to 8.7 at 660 kPa compared with that of the 50Cu sample.
-
-
-
[1]
(1) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335 (6076), 1606. doi: 10.1126/science.1217544
-
[2]
(2) Shi, M.; Lin, C. C. H.; Kuznicki, T. M.; Hashisho, Z.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (11), 3494. doi: 10.1016/j.ces. 2010.02.048
-
[3]
(3) Narin, G.; Martins, V. F. D.; Campo, M.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Schumann, K.; Rodrigues, A. E. Sep. Purif. Technol. 2014, 133, 452. doi:10.1016/j.seppur.2014.06.060
-
[4]
(4) Duan, X.; Zhang, Q.; Cai, J.; Yang, Y.; Cui, Y.; He, Y.; Wu, C.; Krishna, R.; Chen, B.; Qian, G. J. Mater. Chem. A 2014, 2, 2628. doi: 10.1039/c3ta14454b
-
[5]
(5) Gucuyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2010, 132 (50), 17704. doi: 10.1021/ja1089765
-
[6]
(6) Li, J.; Fu, H. R.; Zhang, J.; Zheng, L. S.; Tao, J. Inorg. Chem. 2015, 54 (7), 3093. doi: 10.1021/acs.inorgchem.5b00316
-
[7]
(7) Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Langmuir 2011, 27 (22), 13554. doi: 10.1021/la2030473
-
[8]
(8) Geier, S. J.; Mason, J. A.; Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Brown, C. M.; Long, J. R. Chem. Sci. 2013, 4 (5), 2054. doi: 10.1039/c3sc00032j
-
[9]
(9) Wu, X. F.; Bao, Z. B.; Yuan, B.; Wang, J.; Sun, Y. Q.; Luo, H. M.; Deng, S. G. Microporous Mesoporous Mat. 2013, 180, 114. doi: 10.1016/j.micromeso.2013.06.023
-
[10]
(10) Ma, D. Y.; Li, Y. W.; Li, Z. Chem. Commun. 2011, 47 (26), 7377. doi: 10.1039/c1cc11752a
-
[11]
(11) Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mat. 2009, 120, 325. doi: 10.1016/j.micromeso.2008.11.020
-
[12]
(12) Luo, J. J.; Liu, Y. F.; Sun, W. J.; Jiang, C. F.; Xie, H. P.; Chu, W. Fuel 2014, 123, 241. doi: 10.1016/j.fuel.2014.01.053
-
[13]
(13) Policicchio, A.; Maccallini, E.; Agostino, R. G.; Ciuchi, F.; Aloise, A.; Giordano, G. Fuel 2013, 104, 813. doi: 10.1016/j.fuel.2012.07.035
-
[14]
(14) Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2008, 63 (16), 4171. doi: 10.1016/j.ces. 2008.05.038
-
[15]
(15) Anson, A.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (2), 807. doi: 10.1016/j.ces. 2009.09.033
-
[16]
(16) Feng, Y. Y.; Yang, W.; Chu, W. Chin. Phys. B 2014, 23 (10), 8.
-
[17]
(17) Sun, W. J.; Feng, Y. Y.; Jiang, C. F.; Chu, W. Fuel 2015, 155, 7. doi: 10.1016/j.fuel.2015.03.083
-
[18]
(18) Luo, J. J.; Liu, Y. F.; Jiang, C. F.; Chu, W.; Wen, J.; Xie, H. P. J. Chem. Eng. Data 2011, 56 (12), 4919. doi: 10.1021/je200834p
-
[19]
(19) Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. J. Chem. Eng. Data 1989, 34 (2), 156. doi: 10.1021/je00056a003
-
[20]
(20) Choi, B. U.; Choi, D. K.; Lee, Y. W.; Lee, B. K.; Kim, S. H. J. Chem. Eng. Data 2003, 48 (3), 603. doi: 10.1021/je020161d
-
[21]
(21) Huang, H. Y.; Padin, J.; Yang, R. T. Ind. Eng. Chem. Res. 1999, 38 (7), 2720. doi: 10.1021/ie990035b
-
[22]
(22) Jiang, W. J.; Sun, L. B.; Yin, Y.; Song, X. L.; Liu, X. Q. Sep. Sci. Technol. 2013, 48, 968. doi: 10.1080/01496395.2012.712600
-
[23]
(23) Li, B. Y.; Zhang, Y. M.; Krishna, R.; Yao, K. X.; Han, Y.; Wu, Z. L.; Ma, D. X.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S. Q. J. Am. Chem. Soc. 2014, 136 (24), 8654. doi: 10.1021/ja502119z
-
[24]
(24) Yu, C.; Cowan, M. G.; Noble, R. D.; Zhang, W. Chem. Commun. 2014, 50 (43), 5745. doi: 10.1039/c4cc02143f
-
[25]
(25) Qin, J. X.; Wang, Z. M.; Liu, X. Q.; Li, Y. X.; Sun, L. B. J. Mater. Chem. A 2015, 3, 12247. doi: 10.1039/C5TA02569A
-
[26]
(26) Jiang, W. J.; Yin, Y.; Liu, X. Q.; Yin, X. Q.; Shi, Y. Q.; Sun, L. B. J. Am. Chem. Soc. 2013, 135 (22), 8137. doi: 10.1021/ja4030269
-
[27]
(27) Cowan, M. G.; McDanel, W. M.; Funke, H. H.; Kohno, Y.; Gin, D. L.; Noble, R. D. Angew. Chem. Int. Edit. 2015, 54 (19), 5740. doi: 10.1002/anie.201500251
-
[28]
(28) Wang, K.; Li, X. J.; Ji, S. F.; Shi, X. J.; Tang, J. J. Energy Fuels 2009, 23, 25. doi: 10.1021/ef800553b
-
[29]
(29) Ren, H. P.; Song, Y. H.; Wang, W.; Chen, J. G.; Cheng, J.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Hao, Z. P.; Lu, J. Chem. Eng. J. 2015, 259, 581. doi: 10.1016/j.cej.2014.08.029
-
[30]
(30) Wang, N.; Shen, K.; Huang, L. H.; Yu, X. P.; Qian, W. Z.; Chu, W. ACS Catal. 2013, 3 (7), 1638. doi: 10.1021/cs4003113
-
[31]
(31) Liu, J. X.; Jiang, X. M.; Huang, X. Y.; Wu, S. H. Energy Fuels 2010, 24, 3072. doi: 10.1021/ef100142t
-
[32]
(32) Feng, Y. Y.; Jiang, C. F.; Liu, D. J.; Chu, W. J. Anal. Appl. Pyrolysis 2013, 104, 559. doi: 10.1016/j.jaap.2013.05.013
-
[33]
(33) Ahmed, M. J.; Theydan, S. K. J. Porous Mat. 2014, 21 (5), 747. doi: 10.1007/s10934-014-9821-8
-
[34]
(34) Hao, S. X..; Wen, J.; Yu, X. P.; Chu, W. Appl. Surf. Sci. 2013, 264, 433. doi: 10.1016/j.apsusc.2012.10.040
-
[35]
(35) Feng, Y. Y.; Yang, W.; Liu, D. J.; Chu, W. Chin. J. Chem. 2013, 31 (8), 1102. doi: 10.1002/cjoc.v31.8
-
[36]
(36) Kruk, M.; Jaroniec, M. Chem. Mat. 2001, 13 (10), 3169. doi: 10.1021/cm0101069
-
[37]
(37) Thommes, M. Chem. Ing. Tech. 2010, 82 (7), 1059. doi: 10.1002/cite.201000064
-
[38]
(38) Sing, K. S. W.; Williams, R. T. Adsorpt. Sci. Technol. 2004, 22 (10), 773. doi: 10.1260/0263617053499032
-
[39]
(39) Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A. Phys. Rev. E 2000, 62 (2), 1493. doi: 10.1103/PhysRevE.62.R1493
-
[40]
(40) Ravikovitch, P. I.; Neimark, A. V. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 187, 11.
-
[41]
(41) Ma, J. H.; Li, L.; Ren, J.; Li, R. F. Sep. Purif. Technol. 2010, 76, 89. doi: 10.1016/j.seppur.2010.09.022
-
[42]
(42) Zhang, X. R.; Shi, P. F. J. Mol. Catal. A-Chem. 2003, 194 (1), 99.
-
[43]
(43) Jing, F. L.; Zhang, Y. Y.; Luo, S. Z.; Chu, W.; Zhang, H.; Shi, X. Y. J. Chem. Sci. 2010, 122 (4), 621. doi: 10.1007/s12039-010-0097-5
-
[44]
(44) Han, T.; Huang, W.; Wang, X. D.; Tang, Y.; Liu, S. Q.; You, X. X. Acta Phys. -Chim. Sin. 2014, 30 (11), 2127. [韩涛, 黄伟, 王晓东, 唐钰, 刘双强, 游向轩. 物理化学学报, 2014, 30 (11), 2127.] doi: 10.3866/PKU.WHXB201409121
-
[45]
(45) Xie, X. X.; Fei, Z. Y.; Zou, C.; Li, Z. Z.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Acta Phys. -Chim. Sin. 2015, 31 (6), 1153. [谢兴星, 费兆阳, 邹冲, 李郑州, 陈献, 汤吉海, 崔咪芬, 乔旭. 物理化学学报, 2015, 31 (6), 1153.] doi: 10.3866/PKU. WHXB201504145
-
[1]
-
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
-
[5]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[6]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[7]
Jing Zhang , Su Zhang , Qiqi Li , Linken Ji , Yutong Li , Yukang Ren , Xiaobei Zang , Ning Cao , Han Hu , Peng Liang , Zhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[9]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[10]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[11]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[12]
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
-
[13]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[14]
Yanyan Zhao , Zhen Wu , Yong Zhang , Bicheng Zhu , Jianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142
-
[15]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[16]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[17]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[18]
Congqi Zhu , Bo Liu , Ruchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146
-
[19]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[20]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[1]
Metrics
- PDF Downloads(41)
- Abstract views(451)
- HTML views(26)
Login In
DownLoad: