Citation: XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2158-2164. doi: 10.3866/PKU.WHXB201510091
-
CeO2 promoted CuCl/activated carbon (AC) adsorbents were prepared using an incipient wetness impregnation method, and characterized using N2 adsorption/desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The Cu(II) on the AC surface was reduced to Cu(I) when calcination was performed in a nitrogen flow. The effects of Ce on the C2H4/C2H6 adsorptive separation performance were investigated. The adsorption isotherms showed that the addition of CeO2 improved the separation performance by decreasing the C2H6 adsorption capacity compared with that of the nonpromoted sample. The XRD and XPS results indicated that the active crystal particles on the AC surface became smaller, leading to higher dispersion and a higher degree of Cu(II) reduction. The best adsorption selectivity was obtained using the 5Ce50Cu [CeO2 and CuCl2 mass fractions (w) 5% and 50%, respectively] sample, i.e., with CeO2 in the adsorbent; the adsorption selectivity increased from 4.2 to 8.7 at 660 kPa compared with that of the 50Cu sample.
-
-
[1]
(1) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335 (6076), 1606. doi: 10.1126/science.1217544
-
[2]
(2) Shi, M.; Lin, C. C. H.; Kuznicki, T. M.; Hashisho, Z.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (11), 3494. doi: 10.1016/j.ces. 2010.02.048
-
[3]
(3) Narin, G.; Martins, V. F. D.; Campo, M.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Schumann, K.; Rodrigues, A. E. Sep. Purif. Technol. 2014, 133, 452. doi:10.1016/j.seppur.2014.06.060
-
[4]
(4) Duan, X.; Zhang, Q.; Cai, J.; Yang, Y.; Cui, Y.; He, Y.; Wu, C.; Krishna, R.; Chen, B.; Qian, G. J. Mater. Chem. A 2014, 2, 2628. doi: 10.1039/c3ta14454b
-
[5]
(5) Gucuyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2010, 132 (50), 17704. doi: 10.1021/ja1089765
-
[6]
(6) Li, J.; Fu, H. R.; Zhang, J.; Zheng, L. S.; Tao, J. Inorg. Chem. 2015, 54 (7), 3093. doi: 10.1021/acs.inorgchem.5b00316
-
[7]
(7) Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Langmuir 2011, 27 (22), 13554. doi: 10.1021/la2030473
-
[8]
(8) Geier, S. J.; Mason, J. A.; Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Brown, C. M.; Long, J. R. Chem. Sci. 2013, 4 (5), 2054. doi: 10.1039/c3sc00032j
-
[9]
(9) Wu, X. F.; Bao, Z. B.; Yuan, B.; Wang, J.; Sun, Y. Q.; Luo, H. M.; Deng, S. G. Microporous Mesoporous Mat. 2013, 180, 114. doi: 10.1016/j.micromeso.2013.06.023
-
[10]
(10) Ma, D. Y.; Li, Y. W.; Li, Z. Chem. Commun. 2011, 47 (26), 7377. doi: 10.1039/c1cc11752a
-
[11]
(11) Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mat. 2009, 120, 325. doi: 10.1016/j.micromeso.2008.11.020
-
[12]
(12) Luo, J. J.; Liu, Y. F.; Sun, W. J.; Jiang, C. F.; Xie, H. P.; Chu, W. Fuel 2014, 123, 241. doi: 10.1016/j.fuel.2014.01.053
-
[13]
(13) Policicchio, A.; Maccallini, E.; Agostino, R. G.; Ciuchi, F.; Aloise, A.; Giordano, G. Fuel 2013, 104, 813. doi: 10.1016/j.fuel.2012.07.035
-
[14]
(14) Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2008, 63 (16), 4171. doi: 10.1016/j.ces. 2008.05.038
-
[15]
(15) Anson, A.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (2), 807. doi: 10.1016/j.ces. 2009.09.033
-
[16]
(16) Feng, Y. Y.; Yang, W.; Chu, W. Chin. Phys. B 2014, 23 (10), 8.
-
[17]
(17) Sun, W. J.; Feng, Y. Y.; Jiang, C. F.; Chu, W. Fuel 2015, 155, 7. doi: 10.1016/j.fuel.2015.03.083
-
[18]
(18) Luo, J. J.; Liu, Y. F.; Jiang, C. F.; Chu, W.; Wen, J.; Xie, H. P. J. Chem. Eng. Data 2011, 56 (12), 4919. doi: 10.1021/je200834p
-
[19]
(19) Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. J. Chem. Eng. Data 1989, 34 (2), 156. doi: 10.1021/je00056a003
-
[20]
(20) Choi, B. U.; Choi, D. K.; Lee, Y. W.; Lee, B. K.; Kim, S. H. J. Chem. Eng. Data 2003, 48 (3), 603. doi: 10.1021/je020161d
-
[21]
(21) Huang, H. Y.; Padin, J.; Yang, R. T. Ind. Eng. Chem. Res. 1999, 38 (7), 2720. doi: 10.1021/ie990035b
-
[22]
(22) Jiang, W. J.; Sun, L. B.; Yin, Y.; Song, X. L.; Liu, X. Q. Sep. Sci. Technol. 2013, 48, 968. doi: 10.1080/01496395.2012.712600
-
[23]
(23) Li, B. Y.; Zhang, Y. M.; Krishna, R.; Yao, K. X.; Han, Y.; Wu, Z. L.; Ma, D. X.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S. Q. J. Am. Chem. Soc. 2014, 136 (24), 8654. doi: 10.1021/ja502119z
-
[24]
(24) Yu, C.; Cowan, M. G.; Noble, R. D.; Zhang, W. Chem. Commun. 2014, 50 (43), 5745. doi: 10.1039/c4cc02143f
-
[25]
(25) Qin, J. X.; Wang, Z. M.; Liu, X. Q.; Li, Y. X.; Sun, L. B. J. Mater. Chem. A 2015, 3, 12247. doi: 10.1039/C5TA02569A
-
[26]
(26) Jiang, W. J.; Yin, Y.; Liu, X. Q.; Yin, X. Q.; Shi, Y. Q.; Sun, L. B. J. Am. Chem. Soc. 2013, 135 (22), 8137. doi: 10.1021/ja4030269
-
[27]
(27) Cowan, M. G.; McDanel, W. M.; Funke, H. H.; Kohno, Y.; Gin, D. L.; Noble, R. D. Angew. Chem. Int. Edit. 2015, 54 (19), 5740. doi: 10.1002/anie.201500251
-
[28]
(28) Wang, K.; Li, X. J.; Ji, S. F.; Shi, X. J.; Tang, J. J. Energy Fuels 2009, 23, 25. doi: 10.1021/ef800553b
-
[29]
(29) Ren, H. P.; Song, Y. H.; Wang, W.; Chen, J. G.; Cheng, J.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Hao, Z. P.; Lu, J. Chem. Eng. J. 2015, 259, 581. doi: 10.1016/j.cej.2014.08.029
-
[30]
(30) Wang, N.; Shen, K.; Huang, L. H.; Yu, X. P.; Qian, W. Z.; Chu, W. ACS Catal. 2013, 3 (7), 1638. doi: 10.1021/cs4003113
-
[31]
(31) Liu, J. X.; Jiang, X. M.; Huang, X. Y.; Wu, S. H. Energy Fuels 2010, 24, 3072. doi: 10.1021/ef100142t
-
[32]
(32) Feng, Y. Y.; Jiang, C. F.; Liu, D. J.; Chu, W. J. Anal. Appl. Pyrolysis 2013, 104, 559. doi: 10.1016/j.jaap.2013.05.013
-
[33]
(33) Ahmed, M. J.; Theydan, S. K. J. Porous Mat. 2014, 21 (5), 747. doi: 10.1007/s10934-014-9821-8
-
[34]
(34) Hao, S. X..; Wen, J.; Yu, X. P.; Chu, W. Appl. Surf. Sci. 2013, 264, 433. doi: 10.1016/j.apsusc.2012.10.040
-
[35]
(35) Feng, Y. Y.; Yang, W.; Liu, D. J.; Chu, W. Chin. J. Chem. 2013, 31 (8), 1102. doi: 10.1002/cjoc.v31.8
-
[36]
(36) Kruk, M.; Jaroniec, M. Chem. Mat. 2001, 13 (10), 3169. doi: 10.1021/cm0101069
-
[37]
(37) Thommes, M. Chem. Ing. Tech. 2010, 82 (7), 1059. doi: 10.1002/cite.201000064
-
[38]
(38) Sing, K. S. W.; Williams, R. T. Adsorpt. Sci. Technol. 2004, 22 (10), 773. doi: 10.1260/0263617053499032
-
[39]
(39) Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A. Phys. Rev. E 2000, 62 (2), 1493. doi: 10.1103/PhysRevE.62.R1493
-
[40]
(40) Ravikovitch, P. I.; Neimark, A. V. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 187, 11.
-
[41]
(41) Ma, J. H.; Li, L.; Ren, J.; Li, R. F. Sep. Purif. Technol. 2010, 76, 89. doi: 10.1016/j.seppur.2010.09.022
-
[42]
(42) Zhang, X. R.; Shi, P. F. J. Mol. Catal. A-Chem. 2003, 194 (1), 99.
-
[43]
(43) Jing, F. L.; Zhang, Y. Y.; Luo, S. Z.; Chu, W.; Zhang, H.; Shi, X. Y. J. Chem. Sci. 2010, 122 (4), 621. doi: 10.1007/s12039-010-0097-5
-
[44]
(44) Han, T.; Huang, W.; Wang, X. D.; Tang, Y.; Liu, S. Q.; You, X. X. Acta Phys. -Chim. Sin. 2014, 30 (11), 2127. [韩涛, 黄伟, 王晓东, 唐钰, 刘双强, 游向轩. 物理化学学报, 2014, 30 (11), 2127.] doi: 10.3866/PKU.WHXB201409121
-
[45]
(45) Xie, X. X.; Fei, Z. Y.; Zou, C.; Li, Z. Z.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Acta Phys. -Chim. Sin. 2015, 31 (6), 1153. [谢兴星, 费兆阳, 邹冲, 李郑州, 陈献, 汤吉海, 崔咪芬, 乔旭. 物理化学学报, 2015, 31 (6), 1153.] doi: 10.3866/PKU. WHXB201504145
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[3]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[4]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[5]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[6]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[7]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[8]
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
-
[9]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[10]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[11]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[12]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[13]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[14]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[15]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[16]
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
-
[17]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[18]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[19]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[20]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[1]
Metrics
- PDF Downloads(41)
- Abstract views(274)
- HTML views(24)