Citation: SHEN Wei, TIAN Wen-Wen, QI Zheng-Jian, SUN Yue-Ming. Photoelectric Properties of Novel Amide-Functionalized Ir(III) Complexes[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2174-2182. doi: 10.3866/PKU.WHXB201510084 shu

Photoelectric Properties of Novel Amide-Functionalized Ir(III) Complexes

  • Corresponding author: QI Zheng-Jian,  SUN Yue-Ming, 
  • Received Date: 24 August 2015
    Available Online: 8 October 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2013CB932902) (973) (2013CB932902) 国家自然科学基金(21173042) (21173042) 江苏省科技支撑计划(工业)项目(BE2013118) (工业)项目(BE2013118) 江苏省科技成果转化专项资金(BA2014123) (BA2014123)国家重大科学仪器设备开发专项(2014YQ060773)资助 (2014YQ060773)

  • A series of luminescent cyclometalated Ir(III) complexes functionalized with amide derivatives were prepared and compared with [Ir(ppy)2phen-NH2]Cl. The complexes were [Ir(ppy)2phen-Br]Cl, [Ir(ppy)2phen-COOH]Cl, and [Ir(ppy)2phen-Si]Cl, where ppy is 2-phenylpyridine, phen-NH2 is 5-amino-[1,10]-phenanthroline, phen-Br is 2-bromo-2-methyl-N-(1,10-phenanthrolin-5-yl)propanamide, phen-COOH is 4-[(1,10-phenanthrolin-5-yl)amino]-4-oxobut-2-enoic acid, and phen-Si is 5-[N,N-bis-3-(triethoxysilyl) propyl]ureyl-1,10-phenanthroline. They were characterized using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence (PL) spectroscopy, and cyclic voltammetry (CV). The three novel complexes have intense absorptions in the blue-purple region. The complexes show bright yellow to orange PL emissions under UV irradiation, and the quantum yields (Φ) of these complexes are higher than 12%. The excited-state lifetimes of the novel complexes are 9.18-12.00 μs, much longer than that of [Ir(ppy)2phen-NH2]Cl (5.78 μs). With both the highest quantum yield (32%) and longest lifetime (12.00 μs), [Ir(ppy)2phen-Br]Cl also shows the best oxygen-sensing properties and the largest I0/I factor, 10.91 (I0: the PL intensity of the complex in the absence of O2, I: the PL intensity of the complex under pure oxygen). These results suggest that [Ir(ppy)2phen-Br]Cl may be a promising candidate for use in oxygen sensors based on covalent grafting. Time-dependent density functional theory (TD-DFT) calculations were used to supplement the photoelectric property studies. Theoretical calculations indicate that all the mononuclear complexes have approximately octahedral structures with Ir(III) as the coordination center. The computational results agree well with the experimental data.
  • 加载中
    1. [1]

      (1) Zelelow, B.; Khalil, G. E.; Phelan, G.; Carlson, B.; Gouterman, M.; Callis, J. B.; Dalton, L. R. Sensor Actuat. B-Chem. 2003, 96, 304. doi: 10.1016/S0925-4005(03)00547-1

    2. [2]

      (2) Borisov, S. M.; Vasylevska, A. S.; Krause, C.; Wolfbeis, O. S. Adv. Funct. Mater. 2006, 16, 1536. doi: 10.1002/adfm.200500778

    3. [3]

      (3) Borisov, S. M.; Wolfbeis, O. S. Anal. Chem. 2006, 78, 5094. doi: 10.1021/Ac060311d

    4. [4]

      (4) Kose, M. E.; Carroll, B. F.; Schanze, K. S. Langmuir 2005, 21, 9121. doi: 10.1021/La050997p

    5. [5]

      (5) Lupo, F.; Fragala, M. E.; Gupta, T.; Mamo, A.; Aureliano, A.; Bettinelli, M.; Speghini, A.; Gulino, A. J. Phys. Chem. C 2010, 114, 13459. doi: 10.1021/Jp1028917

    6. [6]

      (6) Schroder, C. R.; Polerecky, L.; Klimant, I. Anal. Chem. 2007, 79, 60. doi: 10.1021/Ac0606047

    7. [7]

      (7) Borisov, S. M.; Krause, C.; Arain, S.; Wolfbeis, O. S. Adv. Mater. 2006, 18, 1511. doi: 10.1002/adma.200600120

    8. [8]

      (8) Lo, K. K. W.; Li, S. P. Y.; Zhang, K. Y. New J. Chem. 2011, 35, 265. doi: 10.1039/C0nj00478b

    9. [9]

      (9) Zhang, S. J.; Hosaka, M.; Yoshihara, T.; Negishi, K.; Iida, Y.; Tobita, S.; Takeuchi, T. Cancer Res. 2010, 70, 4490. doi: 10.1158/0008-5472.Can-09-3948

    10. [10]

      (10) Williams, J. A. Chem. Soc. Rev. 2009, 38, 1783. doi: 10.1039/b804434c

    11. [11]

      (11) Dixon, I. M.; Collin, J. P.; Sauvage, J. P.; Flamigni, L.; Encinas, S.; Barigelletti, F. Chem. Soc. Rev. 2000, 29, 385. doi: 10.1039/B000704h

    12. [12]

      (12) Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S. Adv. Mater. 2009, 21, 4418. doi: 10.1002/adma.200803537

    13. [13]

      (13) Whittle, V. L.; Williams, J. A. Dalton Trans. 2009, 3929. doi: 10.1039/b821161b

    14. [14]

      (14) You, Y.; Park, S. Y. Dalton Trans. 2009, 1267. doi: 10.1039/b812281d

    15. [15]

      (15) Fernandez-Moreira, V.; Thorp-Greenwood, F. L.; Coogan, M. P. Chem Commun (Camb). 2010, 46, 186. doi: 10.1039/b917757d

    16. [16]

      (16) Zhao, Q.; Li, F.; Huang, C. Chem. Soc. Rev. 2010, 39, 3007. doi: 10.1039/b915340c

    17. [17]

      (17) Lo, K. K. W.; Louie, M. W.; Zhang, K. Y. Coordin. Chem. Rev. 2010, 254, 2603. doi: 10.1016/j.ccr.2010.01.014

    18. [18]

      (18) Lo, K. K. W. Photophysics of Organometallics 2010, 29, 115. doi: 10.1007/3418_2009_3

    19. [19]

      (19) Chi, Y.; Chou, P. T. Chem. Soc. Rev. 2010, 39, 638. doi: 10.1039/b916237b

    20. [20]

      (20) Yue, Y.; Xu, H. X.; Hao, Y. Y.; Xie, X. D.; Qu, L. T.; Wang, H.; Xu, B. S. Acta Phys. -Chim. Sin. 2012, 28, 1593. [岳岩, 许慧侠, 郝玉英, 解晓东, 屈丽桃, 王华, 许并社. 物理化学学报, 2012, 28, 1593.] doi: 10.3866/PKU.WHXB201204181

    21. [21]

      (21) Wei, C. D.; Ge, G. P.; Li, C. Y.; Lei, K. W.; Liang, H. Z.; Yu, G.; Liu, Z. W. Acta Phys. -Chim. Sin. 2015, 31, 17. [韦传东, 葛国平, 李春艳, 雷克微, 梁洪泽, 禹钢, 刘志伟. 物理化学学报, 2015, 31, 17.] doi: 10.3866/PKU.WHXB201411212

    22. [22]

      (22) Wang, L. X.; Mei, Q. B.; Yan, F.; Tian, B.; Weng, J. N.; Zhang, B.; Huang, W. Acta Phys. -Chim. Sin. 2012, 28, 1556. [王玲霞, 梅群波, 颜芳, 田波, 翁洁娜, 张彬, 黄维. 物理化学学报, 2012, 28, 1556.] doi: 10.3866/PKU.WHXB201205043

    23. [23]

      (23) Ren, J. K.; Xu, H. X.; Qu, L. T.; Hao, Y. Y.; Wang, H.; Xu, B. S. Acta Phys. -Chim. Sin. 2013, 29, 1115. [任静琨, 许慧侠, 屈丽桃, 郝玉英, 王华, 许并社. 物理化学学报, 2013, 29, 1115.] doi: 10.3866/PKU.WHXB201302253

    24. [24]

      (24) DeRosa, M. C.; Mosher, P. J.; Yap, G. P. A.; Focsaneanu, K. S.; Crutchley, R. J.; Evans, C. E. B. Inorg. Chem. 2003, 42, 4864. doi: 10.1021/Ic026230r

    25. [25]

      (25) Huynh, L.; Wang, Z. U.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.; Winnik, M. A. Chem. Mater. 2005, 17, 4765. doi: 10.1021/cm047794r

    26. [26]

      (26) Ohsawa, Y.; Sprouse, S.; King, K. A.; Dearmond, M. K.; Hanck, K. W.; Watts, R. J. J. Phys. Chem. 1987, 91, 1047. doi: 10.1021/J100289a009

    27. [27]

      (27) Lowry, M. S.; Hudson, W. R.; Pascal, R. A.; Bernhard, S. J. Am. Chem. Soc. 2004, 126, 14129. doi: 10.1021/Ja047156+

    28. [28]

      (28) Medina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Klein, C.; Nazeeruddin, M. K.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Grä tzel, M.; Spichiger-Keller, U. E. Analyst 2007, 132, 929. doi: 10.1039/b702628e

    29. [29]

      (29) Habibagahi, A.; Mebarki, Y.; Sultan, Y.; Yap, G. P.; Crutchley, R. J. ACS Appl. Mater. Interfaces 2009, 1, 1785. doi: 10.1021/am900306a

    30. [30]

      (30) Di Marco, G.; Lanza, M.; Mamo, A.; Stefio, I.; Di Pietro, C.; Romeo, G.; Campagna, S. Anal. Chem. 1998, 70, 5019. doi: 10.1021/ac980234p

    31. [31]

      (31) Xu, W. Y.; Ma, W. T.; Li, K. Y.; Hu, J. M.; Shen, L. R.; Li, H. Y.; Cao, L. X. Sensor Actuat. B-Chem. 2002, 86, 174. doi: 10.1016/s0925-4005(02)00165-x

    32. [32]

      (32) Lu, X.; Manners, I.; Winnik, M. A. Macromolecules 2001, 34, 1917. doi: 10.1021/Ma001454j

    33. [33]

      (33) Hocker, G. B. Appl. Opt. 1979, 18, 1445. doi: 10.1364/Ao.18.001445

    34. [34]

      (34) Klimant, I.; Wolfbeis, O. S. Anal. Chem. 1995, 67, 3160. doi: 10.1021/Ac00114a010

    35. [35]

      (35) Wang, H. Y.; Xu, G. B.; Dong, S. J. Analyst 2001, 126, 1095. doi: 10.1039/b100376n

    36. [36]

      (36) Hubner, J. P.; Carroll, B. F.; Schanze, K. S.; Ji, H. F. Exp. Fluids 2000, 28, 21. doi: 10.1007/s003480050003

    37. [37]

      (37) Tang, Y.; Tehan, E. C.; Tao, Z. Y.; Bright, F. V. Anal. Chem. 2003, 75, 2407. doi: 10.1021/Ac030087h

    38. [38]

      (38) Bedlek-Anslow, J. M.; Hubner, J. P.; Carroll, B. F.; Schanze, K. S. Langmuir 2000, 16, 9137. doi: 10.1021/La0011679

    39. [39]

      (39) Lu, X.; Winnik, M. A. Chem. Mater. 2001, 13, 3449. doi: 10.1021/Cm011029k

    40. [40]

      (40) Li, H. R.; Lin, J.; Zhang, H. J.; Li, H. C.; Fu, L. S.; Meng, Q. G. Chem. Commun. 2001, 1212. doi: 10.1039/b102160p

    41. [41]

      (41) Xavier, M. P.; Garcia-Fresnadillo, D.; Moreno-Bondi, M. C.; Orellana, G. Anal. Chem. 1998, 70, 5184. doi: 10.1021/Ac980722x

    42. [42]

      (42) Wang, Z.; McWilliams, A. R.; Evans, C. E. B.; Lu, X.; Chung, S.; Winnik, M. A.; Manners, I. Adv. Funct. Mater. 2002, 12, 415. doi: 10.1002/1616-3028(20020618)12:6/7< 415::Aid-Adfm415> 3.0.Co; 2-Y

    43. [43]

      (43) Franville, A. C.; Mahiou, R.; Zambon, D.; Cousseins, J. C. Solid State Sci. 2001, 3, 211. doi: 10.1016/S1293-2558(00)01114-6

    44. [44]

      (44) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647. doi: 10.1021/Ja00334a031

    45. [45]

      (45) dos Santos, C. M. G.; Gunnlaugsson, T. Supramol. Chem. 2009, 21, 173. doi: 10.1080/10610270802588285

    46. [46]

      (46) Reetz, M. T.; Rentzsch, M.; Pletsch, A.; Taglieber, A.; Hollmann, F.; Mondiere, R. J. G.; Dickmann, N.; Hocker, B.; Cerrone, S.; Haeger, M. C.; Sterner, R. ChemBioChem 2008, 9, 552. doi: 10.1002/cbic.200700413

    47. [47]

      (47) Lee, S. J.; Bae, D. R.; Han, W. S.; Lee, S. S.; Jung, J. H. Eur. J. Inorg. Chem. 2008, 2008, 1559. doi: 10.1002/ejic.200701073

    48. [48]

      (48) Lo, K. K. W.; Ng, D. C. M.; Chung, C. K. Organometallics 2001, 20, 4999. doi: 10.1021/Om010652b

    49. [49]

      (49) Li, H. R.; Lin, J.; Zhang, H. J.; Fu, L. S.; Meng, Q. G.; Wang, S. B. Chem. Mater. 2002, 14, 3651. doi: 10.1021/Cm0116830

    50. [50]

      (50) Okutsu, T.; Ishihara, A.; Kounose, N.; Suzuki, H. H. T.; Ichimura, T.; Hiratsuka, H. J. Photochem. Photobiol. A 2007, 186, 229. doi: 10.1016/j.jphotochem.2006.08.019

    51. [51]

      (51) Sun, Y.; Liang, X. H.; Zhao, Y. Y.; Fan, J. Spectrochim. Acta A 2013, 102, 194. doi: 10.1016/j.saa.2012.10.013

    52. [52]

      (52) Rodríguez-Romero, J.; Aparicio-Ixta, L.; Rodríguez, M.; Ramos-Ortíz, G.; Maldonado, J. L.; Jiménez-Sánchez, A.; Farfán, N.; Santillan, R. Dyes Pigments 2013, 98, 31. doi: 10.1016/j.dyepig. 2012.12.029

    53. [53]

      (53) Malins, C.; Glever, H. G.; MacCraith, B. D.; Fanni, S.; Vos, J. G. Anal. Commun. 1999, 36, 3. doi: 10.1039/a808731h

    54. [54]

      (54) Tang, L.; Qi, Z. J.; Hong, M. X.; Li, N.; Wei, S.; Yang, F.; Ji, X.; Hu, A. J. Acta Chim. Sin. 2012, 70, 1081. [唐兰兰, 祁争健, 洪满心, 李楠, 沈伟, 杨帆, 吉昕, 胡爱江. 化学学报, 2012, 70, 1081.] doi: 10.6023/A1112121

    55. [55]

      (55) Wang, J. X.; Xia, H. Y.; Liu, W. Q.; Zhao, F.; Wang, Y. B. Inorg. Chim. Acta 2013, 394, 92. doi: 10.1016/j.ica.2012.07.032

    56. [56]

      (56) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.; Pittsburgh, PA, 2003.

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    6. [6]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(31)
  • Abstract views(1450)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return