Citation: HAN Yong, XU Qian, JU Huan-Xin, ZHU Jun-Fa. Growth, Electronic Structure and Thermal Stability of Ni on ZrO2(111) Thin Film Surfaces[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2151-2157. doi: 10.3866/PKU.WHXB201510083
-
The growth mode, electronic structure, and thermal stability of Ni nanoparticles on thin ZrO2(111) film surfaces were investigated using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. Stoichiometric ZrO2(111) thin films with thickness of 3 nm were epitaxially grown on a Pt(111) single-crystal surface. The results indicate that the growth of Ni vapor deposited on thin ZrO2(111) films follows two-dimensional growth up to 0.5 ML (monolayer), followed by threedimensional growth (i.e., the Stranski-Krastanov growth mode). The Ni 2p3/2 binding energy (BE) increases with decreasing Ni coverage. We used the Auger parameter method to differentiate the contributions to this BE shift from the initial-state and final-state effects. The main contribution to the Ni 2p core level BE shift is made by the final-state effect. However, at low Ni coverages, the initial-state effect also contributes. This suggests that at the initial stage of Ni growth on the ZrO2(111) surface, Ni and ZrO2 interact strongly, leading to charge transfer from Ni to the ZrO2 substrate, with the appearance of partially positively charged Niδ+. Thermal stability studies of Ni/ZrO2(111) model catalysts with two different coverages (0.05 and 0.5 ML) indicate further oxidation of Ni to Ni2+ and concurrent diffusion of Ni into the ZrO2 substrate at elevated temperatures. These findings provide an atomic-level fundamental understanding of the interactions between Ni with ZrO2, which is essential for identifying the structures of real ZrO2-supported Ni catalysts.
-
-
[1]
(1) Campbell, C. T. Surf. Sci. Rep. 1997, 27, 1. doi: 10.1016/S0167-5729(96)00011-8
-
[2]
(2) Kuhlenbeck, H.; Shaikhutdinov, S.; Freund, H. J. Chem. Rev. 2013, 113, 3986. doi: 10.1021/cr300312n
-
[3]
(3) Campbell, C. T.; Sauer, J. Chem. Rev. 2013, 113, 6901. doi: 10.1021/cr400332t
-
[4]
(4) Munoz, M. C.; Gallego, S.; Beltran, J. I.; Cerda, J. Surf. Sci. Rep. 2006, 61, 303. doi: 10.1016/j.surfrep.2006.03.002
-
[5]
(5) Nakano, Y.; Iizuka, T.; Hattori, H.; Tanabe, K. J. Catal. 1979, 57, 1. doi: 10.1016/0021-9517(79)90038-1
-
[6]
(6) Han, Y.; Zhu, J. F. Top. Catal. 2013, 56, 1525. doi: 10.1007/s11244-013-0156-5
-
[7]
(7) Wei, J. M.; Xu, B. Q.; Li, J. L.; Cheng, Z. X.; Zhu, Q. M. Appl. Catal. A-Gen. 2000, 196, L167.
-
[8]
(8) Li, X. S.; Chang, J. S.; Tian, M. Y.; Park, S. E. Appl. Organomet. Chem. 2001, 15, 109.
-
[9]
(9) Xu, B. Q.; Wei, J. M.; Yu, Y. T.; Li, J. L.; Zhu, Q. M. Top. Catal. 2003, 22, 77. doi: 10.1023/A:1021419929938
-
[10]
(10) Gonzalez-Delacruz, V. M.; Pereñguez, R.; Ternero, F.; Holgado, J. P.; Caballero, A. ACS Catal. 2011, 1, 82. doi: 10.1021/cs100116m
-
[11]
(11) Campbell, C. T. Nat. Chem. 2012, 4, 597. doi: 10.1038/nchem.1412
-
[12]
(12) Kralik, B.; Chang, E. K.; Louie, S. G. Phys. Rev. B 1998, 57, 7027. doi: 10.1103/PhysRevB.57.7027
-
[13]
(13) Gao, Y.; Zhang, L. A.; Pan, Y. H.; Wang, G. D.; Xu, Y.; Zhang, W. H.; Zhu, J. F. Chin. Sci. Bull. 2011, 56, 502. doi: 10.1007/s11434-010-4309-7
-
[14]
(14) Zhou, Y. H.; Zhou, J. J. Phys. Chem. C 2012, 116, 9544. doi: 10.1021/jp300259y
-
[15]
(15) Memeo, R.; Ciccacci, F.; Mariani, C.; Ossicini, S. Thin Solid Films 1983, 109, 159. doi: 10.1016/0040-6090(83)90135-9
-
[16]
(16) Zhu, J. F.; Farmer, J. A.; Ruzycki, N.; Xu, L.; Campbell, C. T.; Henkelman, G. J. Am. Chem. Soc. 2008, 130, 2314. doi: 10.1021/ja077865y
-
[17]
(17) Tanuma, S.; Powell, C. J.; Penn, D. R. Surf. Interface Anal. 1991, 17, 911.
-
[18]
(18) Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F. J. Phys. Chem. C 2011, 115, 6715. doi: 10.1021/jp112392y
-
[19]
(19) Onishi, H.; Aruga, T.; Egawa, C.; Iwasawa, Y. Surf. Sci. 1990, 233, 261. doi: 10.1016/0039-6028(90)90638-O
-
[20]
(20) Wu, M. C.; Mø ler, P. J. Surf. Sci. 1992, 279, 23. doi: 10.1016/0039-6028(92)90739-S
-
[21]
(21) Sotiropoulou, D.; Ladas, S. Surf. Sci. 1998, 408, 182. doi: 10.1016/S0039-6028(98)00219-2
-
[22]
(22) Zafeiratos, S.; Kennou, S. Surf. Sci. 2003, 532, 402.
-
[23]
(23) Chatain, D.; Rivollet, I.; Eustathopoulos, N. J. Chim. Phys. Phys.-Chim. Biol. 1987, 84, 201.
-
[24]
(24) Mason, M. G. Phys. Rev. B 1983, 27, 748. doi: 10.1103/PhysRevB.27.748
-
[25]
(25) Parmigiani, F.; Kay, E.; Bagus, P. S.; Nelin, C. J. J. Electron Spectrosc. Relat. Phenom. 1985, 36, 257. doi: 10.1016/0368-2048(85)80023-2
-
[26]
(26) Bagus, P. S.; Brundle, C. R.; Pacchioni, G.; Parmigiani, F. Surf. Sci. Rep. 1993, 19, 265. doi: 10.1016/0167-5729(93)90013-F
-
[27]
(27) Zafeiratos, S.; Kennou, S. Surf. Sci. 1999, 443, 238. doi: 10.1016/S0039-6028(99)01014-6
-
[28]
(28) Wagner, C. D. Anal. Chem. 1972, 44, 967. doi: 10.1021/ac60314a015
-
[29]
(29) Wagner, C. D. Anal. Chem. 1975, 47, 1201. doi: 10.1021/ac60357a021
-
[30]
(30) Wagner, C. D.; Gale, L. H.; Raymond, R. H. Anal. Chem. 1979, 51, 466. doi: 10.1021/ac50040a005
-
[31]
(31) Krakauer, H.; Freeman, A. J.; Wimmer, E. Phys. Rev. B 1983, 28, 610. doi: 10.1103/PhysRevB.28.610
-
[32]
(32) Zhang, L.; Persaud, R.; Madey, T. E. Phys. Rev. B 1997, 56, 10549. doi: 10.1103/PhysRevB.56.10549
-
[33]
(33) Rodriguez, J. A.; Kuhn, M.; Hrbek, J. J. Phys. Chem. 1996, 100, 18240. doi: 10.1021/jp962195w
-
[34]
(34) Libuda, J.; Frank, M.; Sandell, A.; Andersson, S.; Brü wiler, P. A.; Bä mer, M.; Må tensson, N.; Freund, H. J. Surf. Sci. 1997, 384, 106. doi: 10.1016/S0039-6028(97)00170-2
-
[35]
(35) Bä mer, M.; Biener, J.; Madix, R. J. Surf. Sci. 1999, 432, 189. doi: 10.1016/S0039-6028(99)00400-8
-
[36]
(36) Fu, Q.; Wagner, T. Surf. Sci. Rep. 2007, 62, 431. doi: 10.1016/j.surfrep.2007.07.001
-
[37]
(37) Sam, J. M.; Gonzalez-Elipe, A. R.; Fernandez, A.; Leinen, D.; Galan, L.; Stampfl, A.; Bradshaw, A. M. Surf. Sci. 1994, 307, 848.
-
[38]
(38) Morant, C.; Fernandez, A.; Gonzalezelipe, A. R.; Soriano, L.; Stampfl, A.; Bradshaw, A. M.; Sanz, J. M. Phys. Rev. B 1995, 52, 11711. doi: 10.1103/PhysRevB.52.11711
-
[39]
(39) Koł czkiewicz, J.; Bauer, E. Surf. Sci. 1984, 144, 495. doi: 10.1016/0039-6028(84)90114-6
-
[40]
(40) Koł czkiewicz, J.; Bauer, E. Surf. Sci. 1986, 175, 508. doi: 10.1016/0039-6028(86)90009-9
-
[41]
(41) Khyzhun, O.; Sygellou, L.; Ladas, S. J. Phys. Chem. B 2005, 109, 2302.
-
[42]
(42) Zhou, J.; Ma, S.; Kang, Y. C.; Chen, D. A. J. Phys. Chem. B 2004, 108, 11633. doi: 10.1021/jp040185m
-
[43]
(43) Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A. Surf. Sci. 2008, 602, 3077. doi: 10.1016/j.susc.2008.07.032
-
[44]
(44) Senanayake, S. D.; Evans, J.; Agnoli, S.; Barrio, L.; Chen, T. L.; Hrbek, J.; Rodriguez, J. A. Top. Catal. 2011, 54, 34. doi: 10.1007/s11244-011-9645-6
-
[1]
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[4]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[5]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[8]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[17]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[18]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[19]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[20]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[1]
Metrics
- PDF Downloads(26)
- Abstract views(405)
- HTML views(5)