Citation: TANG Qing-Long, GENG Chao, LI Ming-Kun, LIU Hai-Feng, YAO Ming-Fa. Laser-Induced Fluorescence Measurements of Formaldehyde and OH Radicals in Dual-Fuel Combustion Process in Engine[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2269-2277. doi: 10.3866/PKU.WHXB201510082 shu

Laser-Induced Fluorescence Measurements of Formaldehyde and OH Radicals in Dual-Fuel Combustion Process in Engine

  • Corresponding author: LIU Hai-Feng, 
  • Received Date: 8 June 2015
    Available Online: 8 October 2015

    Fund Project: 国家自然科学基金国际(地区)合作与交流项目(51320105008)资助 (地区)合作与交流项目(51320105008)

  • Dual-fuel combustion is a promising method for achieving high-efficiency clean combustion in internal combustion engines. Most current research focuses on the effects of dual-fuel injection on engine performance and emissions. Our understanding of dual-fuel in-cylinder combustion processes needs further investigation. In this study, an optical diagnostic system was established to determine the intermediate products during in-cylinder combustion; the system enabled simultaneously qualitative two-dimensional measurements of formaldehyde and OH radicals. To confirm the feasibility of using this laser diagnostic system, laser-induced fluorescence (LIF) spectra and images of formaldehyde and OH radicals in a laminar premixed methane flame were acquired; the excitation laser wavelengths for formaldehyde and OH radicals were verified to be 355 and 292.85 nm, respectively. Non-simultaneous determination of formaldehyde and OH radicals in the combustion chamber was performed to analyze the two-stage heat release process and distribution regions of formaldehyde and OH radicals during dual-fuel combustion. In this investigation, the engine speed was kept at 1200 r·min-1 and the total equivalent fuel quality was 30 mg of n-heptane. Isooctane was injected in intake manifold at the beginning of the intake stroke and n-heptane (9 mg) was directly injected into the cylinder at 10° crank angle before compression top dead center. The results indicate that formaldehyde is formed in the low-temperature heat-release stage and is mainly located in the region near the spray jet; formaldehyde then fills most of the combustion chamber. When the high-temperature heat-release stage is initiated, formaldehyde located at the edge of the combustion chamber is consumed first, followed by consumption of formaldehyde in the center region. Accompanied with the disappearance of formaldehyde during the high-temperature heat-release stage, OH radicals first emerge at the edge of the combustion chamber and later fill the whole combustion chamber. Finally, simultaneous measurements of formaldehyde and OH radicals were conducted. Formaldehyde consumption is spatially accompanied by the formation of OH radicals. In general, the distributions of formaldehyde and OH radicals are separate spatially, but there are some regions where formaldehyde and OH radicals exist simultaneously.
  • 加载中
    1. [1]

      (1) Dec, J. E. Proc. Combust. Inst. 2009, 32, 2727. doi: 10.1016/j.proci.2008.08.008

    2. [2]

      (2) Reitz, R. D.; Duraisamy, G. Prog. Energ. Combust. 2015, 46, 12. doi: 10.1016/j.pecs.2014.05.003

    3. [3]

      (3) Musculus, M. P. B.; Miles, P. C.; Pickett, L. M. Prog. Energ. Combust. 2013, 39, 246. doi: 10.1016/j.pecs.2012.09.001

    4. [4]

      (4) Liu, H. F.; Li, S. J.; Zheng, Z. Q.; Xu, J.; Yao, M. F. Appl. Energ. 2013, 112, 246. doi: 10.1016/j.apenergy.2013.06.023

    5. [5]

      (5) Zheng, Z. Q.; Li, C. L.; Liu, H. F.; Zhang, Y.; Zhong, X. F.; Yao, M. F. Fuel 2015, 141, 109. doi: 10.1016/j.fuel.2014.10.053

    6. [6]

      (6) Inagaki, K.; Fuyuto, T.; Nishikawa, K.; Nakakita, K.; Sakata, I. SAE Tech. Pap. Ser 2006, 2006-01-0028.

    7. [7]

      (7) Kokjohn, S. L.; Hanson, R. M.; Splitter, D. A.; Reitz, R. D. SAE Tech. Pap. Ser 2009, 2009-01-2647.

    8. [8]

      (8) Kokjohn, S. L.; Hanson, R. M.; Splitter, D. A.; Reitz, R. D. Int. J. Engine Res. 2011, 12 (3), 209. doi: 10.1177/1468087411401548

    9. [9]

      (9) Ma, S.; Zheng, Z.; Liu, H.; Zhang, Q.; Yao, M. Appl. Energ. 2013, 109, 202. doi: 10.1016/j.apenergy.2013.04.012

    10. [10]

      (10) Liu, H. F.; Wang, X.; Zheng, Z. Q.; Gu, J. B.; Wang, H.; Yao, M. F. Energy 2014, 74, 741. doi: 10.1016/j.energy.2014.07.041

    11. [11]

      (11) Zhang, X. Y.; Liu, Y. F.; He, X.; Gao, Y. L.; Shang, Y.; Li, X. R. Transactions of CSICE 2015, 32 (5), 393. [张小玉, 刘福水, 何旭, 高永利, 尚勇, 李向荣. 内燃机学报, 2014, 32 (5), 393.]

    12. [12]

      (12) Ma, Y. P.; Liu, F. S.; He, X. Transactions of CSICE 2014, 32 (4), 296. [马玉坡, 刘福水, 何旭. 内燃机学报, 2014, 32 (4), 296.]

    13. [13]

      (13) Kokjohn, S.; Reitz, R. D.; Splitter, D.; Musculus, M. SAE International Journal of Engines 2012, 5 (2), 248. doi: 10.4271/2012-01-0375

    14. [14]

      (14) Mancaruso, E.; Vaglieco, B. M. SAE International Journal of Fuels and Lubricants 2011, 4 (2), 271. doi: 10.4271/2011-24-0061

    15. [15]

      (15) Donkerbroek, A. J.; van Vliet, A. P.; Somers, L. M. T.; Frijters, P. J. M.; Klein-Douwel, R. J. H.; Dam, N. J.; Meerts, W. L.; ter Meulen, J. J. Combust. Flame 2010, 157 (1), 155. doi: 10.1016/j.combustflame.2009.07.004

    16. [16]

      (16) Dec, J. E.; Coy, E. B. SAE Tech. Pap. Ser. 1996, 960831.

    17. [17]

      (17) Richter, M.; Collin, R.; Nygren, J.; Alden, M.; Hildingsson, L.; Johansson, B. JSME International Journal Series B Fluids and Thermal Engineering 2005, 48 (4), 701. doi: 10.1299/jsmeb.48.701

    18. [18]

      (18) Ma, X.; Wang, Z.; Jiang, C. Fuel 2014, 134 (9), 603.

    19. [19]

      (19) Ma, X.; Xu, H.; Jiang, C. Appl. Energ. 2014, 122 (5), 247.

    20. [20]

      (20) Weng, W. B.; Wang, Z. H.; He, Y. Journal of Engineering Thermophysics 2014, 35 (11), 2308. [翁武斌, 王智化, 何勇. 工程热物理学报, 2014, 35 (11), 2308.]

    21. [21]

      (21) He, Y.; Wang, Z. H.; Yang, L. Proceedings of the CSEE 2011, 31 (5), 28. [何勇, 王智化, 杨丽. 中国电机工程学报, 2011, 31(5), 28.]

    22. [22]

      (22) Zhou, Y. J.; Wang, Z. H.; He, Y. Journal of Experiments in Fluid Mechanics 2014, 28 (3), 45. [周雅君, 王智化, 何勇. 实验流体力学, 2014, 28 (3), 45.]

    23. [23]

      (23) Schulz, C.; Sick, V. Prog. Energ. Combust. 2005, 31 (1), 75. doi: 10.1016/j.pecs.2004.08.002

    24. [24]

      (24) Genzale, C. L.; Reitz, R. D.; Musculus, M. P. B. SAE Tech. Pap. Ser. 2008, 2008-01-1330.

    25. [25]

      (25) Donkerbroek, A. J.; van Vliet, A. P.; Somers, L. M. T.; Dam, N. J.; ter Meulen, J. J. Combust. Flame 2011, 158 (3), 564. doi: 10.1016/j.combustflame.2010.09.024

    26. [26]

      (26) Collin, R.; Nygren, J.; Richter, M.; Aldé n, M.; Hildingsson, L.; Johansson, B. SAE Tech. Pap. Ser. 2003, 2003-01-3218.

    27. [27]

      (27) Genzale, C. L.; Reitz, R. D.; Musculus, M. P. B. Proc. Combust. Inst. 2009, 32 (2), 2767. doi: 10.1016/j.proci.2008.06.072

    28. [28]

      (28) Zhang, P.; Liu, H. F.; Chen, B. L.; Tang, Q. L.; Yao, M. F. Acta Phys. -Chim. Sin. 2015, 31 (1), 32. [张鹏, 刘海峰, 陈贝凌, 唐青龙, 尧命发. 物理化学学报, 2015, 31 (1), 32.] doi: 10.3866/PKU.WHXB201411051

    29. [29]

      (29) Zheng, L.; Ma, X.; Wang, Z.; Wang, J. X. Fuel 2015, 139, 365. doi: 10.1016/j.fuel.2014.09.009

    30. [30]

      (30) Tang, Q. L.; Zhang, P.; Liu, H. F.; Yao, M. F. Acta Phys. -Chim. Sin. 2015, 31 (5), 980. [唐青龙, 张鹏, 刘海峰, 尧命发. 物理化学学报, 2015, 31 (5), 980.] doi: 10.3866/PKU. WHXB201503101

    31. [31]

      (31) Brackmann, C.; Nygren, J.; Bai, X.; Li, Z.; Bladh, H.; Axelsson, B.; Denbratt, I.; Koopmans, L.; Bengtsson, P. E.; Aldé n, M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2003, 59 (14), 3347. doi: 10.1016/S1386-1425(03)00163-X

    32. [32]

      (32) Luque, J.; Crosley, D. R. 1999, SRI International Report MP 99-009.

  • 加载中
    1. [1]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    2. [2]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    14. [14]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(38)
  • Abstract views(489)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return