Citation: LU Jian-Jian, YING Zong-Rong, LIU Xin-Dong, ZHAO Shuang-Sheng. Preparation of Cross-Linked Porous Carbon Nanofiber Networks by Electrospinning Method and Their Electrochemical Capacitive Behaviors[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2099-2108. doi: 10.3866/PKU.WHXB201510081 shu

Preparation of Cross-Linked Porous Carbon Nanofiber Networks by Electrospinning Method and Their Electrochemical Capacitive Behaviors

  • Corresponding author: YING Zong-Rong, 
  • Received Date: 19 May 2015
    Available Online: 8 October 2015

  • Cross-linked porous carbon nanofiber networks were successfully prepared by electrospinning followed by preoxidation and carbonization using low-cost melamine and polyacrylonitrile (PAN) as precursors. The structures and morphologies of the nanofiber networks were investigated using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and N2 adsorption/desorption. The carbon fibers had an interconnected nanofibrous morphology with a well-developed porous structure including micropores, mesopores and macropores, high-level nitrogen doping (up to 14.3%), and a small average diameter (about 89 nm). Without activation, the carbon nanofibers had a high specific capacitance of 194 F·g-1 at a current density of 0.05 A·g-1. Cycling experiments showed that the specific capacitance retained approximately 99.2% of the initial capacitance after 1000 cycles at a current density of 2 A·g-1, indicating an excellent electrochemical performance.
  • 加载中
    1. [1]

      (1) Li, Z. H.; Li, S. J.; Zhou, J.; Zhu, T. T.; Shen, H. L.; Zhuo, S. P. Acta Phys. -Chim. Sin. 2015, 31 (4), 676. [李朝辉, 李仕蛟, 周晋, 朱婷婷, 沈红龙, 禚淑萍. 物理化学学报, 2015, 31(4), 676.] doi: 10.3866/PKU.WHXB201501281

    2. [2]

      (2) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29 (8), 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河周. 物理化学学报, 2013, 29 (8), 1681.] doi: 10.3866/PKU.WHXB201305223

    3. [3]

      (3) Xu, G. Y.; Ding, B.; Nie, P.; Luo, H. J.; Zhang, X. G. Acta Phys. -Chim. Sin. 2013, 29 (3), 546. [徐桂银, 丁兵, 聂平, 骆宏钧, 张校刚. 物理化学学报, 2013, 29 (3), 546.] doi: 10.3866/PKU. WHXB201301081

    4. [4]

      (4) Chen, C. J.; Hu, Z. A.; Hu, Y. Y.; Li, L.; Yang, Y. Y.; An, N.; Li, Z. M.; Wu, H. Y. Acta Phys. -Chim. Sin. 2014, 30 (12), 2256. [陈婵娟, 胡中爱, 胡英瑛, 李丽, 杨玉英, 安宁, 李志敏, 吴红英. 物理化学学报, 2014, 30 (12), 2256.] doi: 10.3866/PKU. WHXB201409302

    5. [5]

      (5) Guo, P. Z.; Ji, Q. Q.; Zhang, L. L.; Zhao, S. Y.; Zhao, X. S. Acta Phys. -Chim. Sin. 2011, 27 (12), 2836. [郭培志, 季倩倩, 张丽莉, 赵善玉, 赵修松. 物理化学学报, 2011, 27 (12), 2836.] doi: 10.3866/PKU.WHXB20112836

    6. [6]

      (6) Ma, G. F.; Mu, J. J.; Zhang, Z. G.; Sun, K. J.; Peng, H.; Lei, Z. Q. Acta Phys. -Chim. Sin. 2013, 29 (11), 2385. [马国富, 牟晶晶, 张稚国, 孙看军, 彭辉, 雷自强. 物理化学学报, 2013, 29 (11), 2385.] doi: 10.3866/PKU.WHXB201309051

    7. [7]

      (7) Wang, J. D.; Peng, T. J.; Sun, H. J.; Hou, Y. D. Acta Phys. -Chim. Sin. 2014, 30 (11), 2077. [汪建德, 彭同江, 孙红娟, 侯云丹. 物理化学学报, 2014, 30 (11), 2077.] doi: 10.3866/PKU.WHXB 201409152

    8. [8]

      (8) Peng, X.; Li, D. Q.; Peng, J.; Peng, L. L.; Wu, C. Z.; Xie, Y. Bull Sci. Technol. 2013, 58 (28-29), 2886. [彭旭, 李典奇, 彭晶, 彭乐乐, 吴长征, 谢毅. 科学通报, 2013, 58 (28-29), 2886.]

    9. [9]

      (9) Lai, C.; Zhou, Z.; Zhang, L.; Wang, X.; Zhou, Q.; Zhao, Y.; Wang, Y.; Wu, X. F.; Zhu, Z.; Fong, H. J. Power Sources 2014, 247, 134. doi: 10.1016/j.jpowsour.2013.08.082

    10. [10]

      (10) Yang, S.; Xu, G. Y.; Han, J. P.; Bing, H.; Dou, H.; Zhang, X. G. Acta Phys. -Chim. Sin. 2015, 31 (4), 685. [杨硕, 徐桂银, 韩金鹏, 邴欢, 窦辉, 张校刚. 物理化学学报, 2015, 31 (4), 685.] doi: 10.3866/PKU.WHXB201502022

    11. [11]

      (11) Zhao, L.; Wu, Q.; Han, R.; Wu, J.; Yao, W. Materials Review 2013, 27 (11), 54

    12. [12]

      (12) Su, D. S.; Chen, X.; Weinberg, G.; Klein-Hofmann, A.; Timpe, O.; Hamid, S. B. A.; Schlö gl, R. Angew. Chem. Int. Edit. 2005, 44 (34), 5488.

    13. [13]

      (13) Sharma, S.; Pollet, B. G. J. Power Sources 2012, 208, 96. doi: 10.1016/j.jpowsour.2012.02.011

    14. [14]

      (14) Wu, C.; Yao, X.; Zhang, H. Int. J. Hydrog. Energy 2010, 35 (1), 247. doi: 10.1016/j.ijhydene.2009.10.079

    15. [15]

      (15) Chinthaginjala, J.; Seshan, K.; Lefferts, L. Ind. Eng. Chem. Res. 2007, 46 (12), 3968. doi: 10.1021/ie061394r

    16. [16]

      (16) Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63 (15), 2223. doi: 10.1016/S0266-3538(03)00178-7

    17. [17]

      (17) Jung, M. J.; Jeong, E.; Kim, Y.; Lee, Y. S. J. Ind. Eng. Chem. 2013, 19 (4), 1315 doi: 10.1016/j.jiec.2012.12.034

    18. [18]

      (18) Kim, B. H.; Yang, K. S. J. Electroanal. Chem. 2014, 714, 92.

    19. [19]

      (19) Park, G. S.; Lee, J. S.; Kim, S. T.; Park, S.; Cho, J. J. Power Sources 2013, 243, 267. doi: 10.1016/j.jpowsour.2013.06.025

    20. [20]

      (20) Hang, Z. S.; Tan, L. H.; Cao, X. M.; Ju, F. Y.; Ying, S. J.; Xu, F. M. Mater. Lett. 2011, 65 (7), 1079. doi: 10.1016/j.matlet. 2011.01.010

    21. [21]

      (21) Kim, B. H.; Yang, K. S. J. Ind. Eng. Chem. 2014, 20 (5), 3474. doi: 10.1016/j.jiec.2013.12.037

    22. [22]

      (22) Hang, Z. S.; Tan, L. H.; Ju, F. Y.; Zhou, B.; Ying, S. J. J. Anal. Sci. 2011, 27 (3), 279. [杭祖圣, 谈玲华, 居法银, 周斌, 应三九. 分析科学学报, 2011, 27 (3), 279.]

    23. [23]

      (23) Yuan, B.; Zheng, X. Y.; Zhang, C.; Lu, W.; Li, B. H.; Yang, Q. H. New Carbon Materials 2014, 29 (6), 426. doi: 10.1016/S1872-5805(14)60147-5

    24. [24]

      (24) Wu, H.; Hu, L.; Rowell, M. W.; Kong, D.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y.; McGehee, M. D.; Cui, Y. Nano Lett. 2010, 10 (10), 4242. doi: 10.1021/nl102725k

    25. [25]

      (25) Qiu, Y. J.; Yu, J.; Shi, T. G.; Zhou, X. S.; Bai, X. D.; Huang, J. Y. J. Power Sources 2011, 196, 9862. doi: 10.1016/j.jpowsour.2011.08.013

    26. [26]

      (26) Sun, L.; Tian, C. G.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H. G. Chem. Eur. J. 2014, 20, 564. doi: 10.1002/chem.v20.2

    27. [27]

      (27) Nan, D.; Huang, Z. H.; Lv, R. T.; Yang, L.; Wang, J. G.; Shen, W. C.; Lin, Y. X.; Yu, X. L.; Ye, L.; Sun, H. Y.; Kang, F. Y. J. Mater. Chem. A 2014, 2, 19678. doi: 10.1039/C4TA03868A

    28. [28]

      (28) Li, M.; Xue, J. J. Phys. Chem. C 2014, 118 (5), 2507. doi: 10.1021/jp410198r

    29. [29]

      (29) Muhammad, T.; Chuan, B. C.; Nasir, M.; Faheem, K. B.; Asif, M.; Faryal, I.; Sajad, H.; M, T.; Zulfiqar, A.; Imran, A. ACS Appl. Mater. Interfaces 2014, 6, 1258.

    30. [30]

      (30) Ya, M.; Hui, D.; Bin, X.; Lin, Z.; Yong, S. H.; Chang, C. X. Energy Environ. Sci. 2012, 5 (7), 7950.

    31. [31]

      (31) Chuan, G. H.; Qing, H.; Fei, Z.; Zi, Y. Y.; Nan, C.; Liang, T. Q. Nanoscale 2013, 5, 2726. doi: 10.1039/c3nr34002c

    32. [32]

      (32) An, G. H.; Ahn, H. J. Carbon 2013, 65, 87. doi: 10.1016/j.carbon.2013.08.002

    33. [33]

      (33) Wang, Y.; Serrano, S.; Santiago-Aviles, J. J. Synthetic Metals 2003, 138 (3), 423. doi: 10.1016/S0379-6779(02)00472-1

    34. [34]

      (34) Lu, J. W.; Ren, X. Z.; Chen, Y. Z.; Dong, M.; Zhang, Z. P.; Yu, J.; Guo, C. Y. Chem. J. Chin. Univ. 2008, 29 (9), 1870. [陆建巍, 任祥忠, 陈艺章, 董穆, 张展鹏, 于建, 郭朝霞. 高等学校化学学报, 2008, 29 (9), 1870.]

    35. [35]

      (35) Yang, X.; Wu, D.; Chen, X.; Fu, R. J. Phys. Chem. C 2010, 114 (18), 8581. doi: 10.1021/jp101255d

    36. [36]

      (36) Su, F.; Poh, C. K.; Chen, J. S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X. W. Energy Environ. Sci. 2011, 4 (3), 717. doi: 10.1039/C0EE00277A

    37. [37]

      (37) Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J. Adv. Mater. 2012, 24 (41), 5610. doi: 10.1002/adma.201201920

    38. [38]

      (38) Xiao, N.; Lau, D.; Shi, W.; Zhu, J.; Dong, X.; Hng, H. H.; Yan, Q. Carbon 2013, 57, 184. doi: 10.1016/j.carbon.2013.01.062

    39. [39]

      (39) Hassan, F. M.; Chabot, V.; Li, J.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A. J. Mater. Chem. A 2013, 1 (8), 2904. doi: 10.1039/c2ta01064j

    40. [40]

      (40) Li, Z. P.; Zhao, J. G.; Wen, Y. Q.; Li, J.; Xing, B. Y.; Guo, Y. Chem. Ind. Eng. Prog. 2012, 31 (8), 1631. [李作鹏, 赵建国, 温雅琼, 李江, 邢宝岩, 郭永. 化工进展, 2012, 31 (8), 1631.]

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Zhenyu Feng Zhaozhen Cao Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(29)
  • Abstract views(359)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return