Citation: CHEN Chen, LU Dan-Feng, CHENG Jin, QI Zhi-Mei. Simulation of Surface Plasmon Coupled Emission with Silver Film[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2023-2028. doi: 10.3866/PKU.WHXB201509182
-
Surface plasmon coupled emission (SPCE) is a physical process opposite to conventional surface plasmon resonance (SPR) with Kretschmann configuration: if a molecule is close enough to the metal surface, the photons generated by excitation of the molecule will be coupled to the SPR mode that is then transformed into the far-field beam propagating at the resonance angle. SPCE serving as a powerful surface-selective analytical technique has been recently used in fluorescence and Raman spectroscopies, and it has several advantages such as repeatable field enhancement, high collection efficiency, and great surface selectivity. In this work, we simplified the simulation of SPCE based on the optical reciprocity theorem. We obtained the radiation patterns of the excited molecule with different orientations, the surface selectivity of SPCE, the wavelength dependence of the radiation angle, and the relationship between the full-width at half-maximum (FWHM) of the radiation angle and the thickness of a silver layer. These simulated results fit almost perfectly with the experimental results reported previously.
-
-
[1]
(1) Gao, L. N.; Lu, F. T.; Hu, J.; Fang, Y. Acta Phys. -Chim. Sin. 2007, 23(2), 274. [高莉宁, 吕凤婷, 胡静, 房喻. 物理化学学报, 2007, 23(2), 274.] doi: 10.3866/PKU.WHXB20070226
-
[2]
(2) Zhu, Z. H.; Zhu, T.; Wang, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2000, 16(2), 138. [朱梓华, 朱涛, 王健, 刘忠范. 物理化学学报, 2000, 16(2), 138.] doi: 10.3866/PKU.WHXB20000209
-
[3]
(3) Valdivia, R. H.; Falkow, S. Science 1997, 277(5334), 2007. doi: 10.1126/science.277.5334.2007
-
[4]
(4) Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78(9), 1667. doi: 10.1103/PhysRevLett.78.1667
-
[5]
(5) Nie, S. M.; Emery, S. R. Science 1997, 275(21), 1102. doi: 10.1126/Science.275.5303.1102
-
[6]
(6) Chanda Ranjit, Y.; Haynes, C. L.; Xiaoyu, Z.; Walsh, J. T.; van Duyne, R. P. Anal. Chem. 2004, 76(1), 78. doi: 10.1021/ ac035134k
-
[7]
(7) Lakowicz, J. R. Anal. Biochem. 2001, 298, 1. doi: 10.1006/abio. 2001.5377
-
[8]
(8) Lakowicz, J. R.; Shen, Y.; D'Auria, S.; Malicka, J.; Fang, J.; Gryczynski, Z.; Gryczynski, I. Anal. Biochem. 2002, 301, 261. doi: 10.1006/abio.2001.5503
-
[9]
(9) Lakowicz, J. R. Anal. Biochem. 2005, 337, 171. doi: 10.1016/j.ab.2004.11.026
-
[10]
(10) Anger, P.; Bharadwaj, P.; Novotny, L. Phys. Rev. Lett. 2006, 96, 113002. doi: 10.1103/PhysRevLett.96.113002
-
[11]
(11) Lee, K. G.; Chen, X. W.; Eghlidi, H.; Kukura, P.; Lettow, R.; Renn, A.; Gotzinger, S.; Sandoghdar, V. Nat. Photonics 2011, 5, 166. doi: 10.1038/nphoton.2010.312
-
[12]
(12) Taminiau, T. H.; Stefani, F. D.; Segerink, F. B; van Hulst, N. F. Nat. Photonics 2008, 6, 234.
-
[13]
(13) Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Science 2010, 329, 930. doi: 10.1126/science.1191922
-
[14]
(14) Lakowicz, J. R. Anal. Biochem. 2004, 324, 153. doi: 10.1016/j.ab.2003.09.039
-
[15]
(15) Chen, C.; Li, J. Y.; Wang, L.; Lu, D. F.; Qi, Z. M. Phys. Chem. Chem. Phys. 2015, 17, 21278. doi: 10.1039/C4CP05092D
-
[16]
(16) Li, H.; Xu, S.; Liu, Y.; Gu, Y.; Xu, W. Thin Solid Films 2012, 520(18), 6001. doi: 10.1016/j.tsf.2012.04.084
-
[17]
(17) Nils, C. Anal. Chem. 2004, 76, 2168. doi: 10.1021/ac049925d
-
[18]
(18) Zhao, Q.; Lu, D. F.; Liu, D. L.; Chen, C.; Hu, D. B.; Qi, Z. M. Acta Phys. -Chim. Sin. 2014, 30(7), 1201. [赵乔, 逯丹凤, 刘德龙, 陈晨, 胡德波, 祁志美. 物理化学学报, 2014, 30(7), 1201.] doi: 10.3866/PKU.WHXB201405191
-
[19]
(19) Hu, D. B.; Chen, C.; Qi, Z. M. J. Phys. Chem. C 2014, 118(24), 13099. doi: 10.1021/jp502171k
-
[20]
(20) Hu, D. B.; Qi, Z. M. J. Phys. Chem. C 2013, 117(31), 16175.doi: 10.1021/jp4052903
-
[21]
(21) Van Orden, A.; Machara, N. P.; Goodwin, P. M.; Keller, R. A. Anal. Chem. 1998, 70(7), 1444. doi: 10.1021/ac970545k
-
[22]
(22) Carminati, R.; Nieto, M. J. Opt. Soc. Am. 1998, 15, 706. doi: 10.1364/JOSAA.15.000706
-
[23]
(23) Ru, E. C. L.; Etchegoin, P. G. Chem. Phys. Lett. 2006, 423(1), 63.
-
[24]
(24) Hu, D. B. Resonant Mirror Enhanced Surface Raman Spectroscopy. Ph. D. Dissertation, The University of Chinese Academy of Sciences, Beijing, 2014. [胡德波. 共振镜增强的表面拉曼光谱技术[D]. 北京: 中国科学院大学, 2014.]
-
[25]
(25) Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, 1999; pp 38-70.
-
[26]
(26) Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G. Anal. Chem. 2011, 83, 2337. doi: 10.1021/ac103273r
-
[1]
-
-
[1]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[2]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[3]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[4]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[5]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[6]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[7]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[8]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[9]
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[12]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[13]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[14]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[15]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[16]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[17]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[18]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[19]
Weitai Wu , Laiying Zhang , Yuan Chun , Liang Qiao , Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031
-
[20]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[1]
Metrics
- PDF Downloads(66)
- Abstract views(675)
- HTML views(15)