Citation: LUO Liu-Xuan, SHEN Shui-Yun, ZHU Feng-Juan, ZHANG Jun-Liang. Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 337-342. doi: 10.3866/PKU.WHXB201509144
-
We designed and synthesized carbon-supported cubic Pt3Ni nanoparticles (NPs) with Pd monolayer shells (Pt3Ni@Pd/C) by a two-step method: generally, CO-assisted preparation of cubic Pt3Ni NPs, Pd monolayer deposition through underpotential deposition of a Cu monolayer, and displacement of Cu with Pd. The as-synthesized Pt3Ni@Pd/C catalyst was characterized with inductively coupled plasma elemental analysis, X-ray diffraction, and transmission electron microscopy. Most Pt3Ni NPs had a cubic nanostructure enclosed by {100} facets, on which the Pd monolayer shells were deposited epitaxially via electrodeposition, by which the Pd monolayers gained the crystallographic orientation of the {100} facets. We then used Pt3Ni@Pd/C as an electrocatalyst for formic acid oxidation (FAO), comparing it with commercial Pd/C and the pristine Pt3Ni/C catalysts. The Pt3Ni@Pd/C exhibited superior electrocatalytic performance because of its monolayer structure and exposed Pd{100} facets. The noble-metal mass activity of the Pt3Ni/C with the deposited Pd monolayer shell was 7.5 times greater than that of the Pt3Ni/C catalyst alone. Moreover, the area-specific and Pd mass activities of Pt3Ni@Pd/C were 2.5 and 8.3 times greater than those of the commercial Pd/C catalyst, respectively.
-
-
[1]
(1) Niu, Z.; Peng, Q.; Gong, M.; Rong, H.; Li, Y. Angew. Chem. 2011, 123, 6439. doi: 10.1002/ange.201100512
-
[2]
(2) Mazumder, V.; Chi, M.; Mankin, M. N.; Liu, Y.; Metin, O.; Sun, D.; More, K. L.; Sun, S. Nano Lett. 2012, 12, 1102. doi: 10.1021/nl2045588
-
[3]
(3) Wang, R.; Liao, S.; Ji, S. J. Power Sources 2008, 180, 205. doi: 10.1016/j.jpowsour.2008.02.027
-
[4]
(4) Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83. doi: 10.1016/S0378-7753(02)00271-9
-
[5]
(5) Chen, M.; Wang, Z. B.; Zhou, K.; Chu, Y. Y. Fuel Cells 2010, 10, 1171. doi: 10.1002/fuce.v10.6
-
[6]
(6) Wang, S.; Kristian, N.; Jiang, S.; Wang, X. Electrochem. Commun. 2008, 10, 961. doi: 10.1016/j.elecom.2008.04.018
-
[7]
(7) Yang, J.; Tian, C.; Wang, L.; Fu, H. J. Mater. Chem. 2011, 21, 3384. doi: 10.1039/c0jm03361h
-
[8]
(8) Babu, P. K.; Kim, H. S.; Chung, J. H.; Oldfield, E.; Wieckowski, A. J. Phys. Chem. B 2004, 108, 20228. doi: 10.1021/jp0403893
-
[9]
(9) Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R. I. J. Power Sources 2006, 157, 78. doi: 10.1016/j.jpowsour.2005.07.066
-
[10]
(10) Li, H.; Sun, G.; Jiang, Q.; Zhu, M.; Sun, S.; Xin, Q. Electrochem. Commun. 2007, 9, 1410. doi: 10.1016/j.elecom.2007.01.032
-
[11]
(11) Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources 2005, 144, 28. doi: 10.1016/j.jpowsour.2004.12.031
-
[12]
(12) Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229. doi: 10.1016/S0378-7753(03)00026-0
-
[13]
(13) Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. J. Am. Chem. Soc. 2008, 130, 5406. doi: 10.1021/ja800656y
-
[14]
(14) Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, L. A.; Rodríguez, H. G.; Alvarez-Contreras, L.; Arriaga, L. G. J. Power Sources 2010, 195, 461. doi: 10.1016/j.jpowsour.2009.08.014
-
[15]
(15) Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. J. Phys. Chem. B 2006, 110, 12480. doi: 10.1021/jp0608372
-
[16]
(16) Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. J. Phys. Chem. C 2013, 117, 4172. doi: 10.1021/jp312859x
-
[17]
(17) Dai, Y.; Mu, X.; Tan, Y.; Lin, K.; Yang, Z.; Zheng, N.; Fu, G. J. Am. Chem. Soc. 2012, 134, 7073. doi: 10.1021/ja3006429
-
[18]
(18) Huang, X.; Tang, S.; Zhang, H.; Zhou, Z.; Zheng, N. J. Am. Chem. Soc. 2009, 131, 13916. doi: 10.1021/ja9059409
-
[19]
(19) Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotech. 2011, 6, 28. doi: 10.1038/nnano.2010.235
-
[20]
(20) Xia, X.; Choi, S. I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H. C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 15706. doi: 10.1021/ja408018j
-
[21]
(21) Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Energy Environ. Sci. 2012, 5, 6352. doi: 10.1039/C2EE02866B
-
[22]
(22) Wu, J.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p
-
[23]
(23) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953
-
[24]
(24) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Edit. 2009, 48, 60. doi: 10.1002/anie.200802248
-
[25]
(25) Mazumder, V.; Lee, Y.; Sun, S. Adv. Funct. Mater. 2010, 20, 1224. doi: 10.1002/adfm.v20:8
-
[26]
(26) Baldauf, M.; Kolb, D. M. J. Phys. Chem. 1996, 100, 11375. doi: 10.1021/jp952859m
-
[1]
-
-
[1]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[4]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[5]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[6]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[9]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[10]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[11]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[12]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[13]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[14]
Jin Jia , Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091
-
[15]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[16]
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
-
[17]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[18]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[19]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[20]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(373)
- HTML views(29)