Citation: DAI Wei, CHEN Liu-Yang, ZHENG Li-Min, YANG Ming-Hui. Application of the Multi-Center Partition Method to Construct the Potential Energy Surface of H3[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2077-2082. doi: 10.3866/PKU.WHXB201509143
-
The potential energy surface plays an important role in studying molecular reaction dynamics. In this work, a new method, namely the “multi-center partition” method, is proposed to construct the potential energy surface of H3. The optimized function is first determined by comparing the London-Eyring-Polanyi-Sato (LEPS) potential, the many-body expansion potential, and the permutation-invariant polynomial potential. This comparison shows that the permutation-invariant polynomial fitting proposed by Bowman is the most efficient method for describing the topology of the H3 system. The quasi-classical trajectory method is used to analyze the rationality of those potential energy surfaces. By combining the multi-center partition method with the permutation-invariant polynomial method, the accuracy of the H3 molecular potential energy surface is greatly improved and could possibly be used in the fitting of potential energy surfaces in other systems.
-
-
[1]
(1) Sun, Z. F.; Gao, Z.; Wu, X. K.; Tang, G. Q.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2015, 31, 829. [孙中发, 高治, 吴向坤, 唐国强, 周晓国, 刘世林. 物理化学学报, 2015, 31, 829.] doi: 10.3866/PKU.WHXB201503041
-
[2]
(2) Li, W.; Qu, J. Y.; Zhao, X. S. Acta Phys. -Chim. Sin. 2003, 19 (8), 751. [李巍, 屈军艳, 赵新生. 物理化学学报, 2003, 19 (8), 751.] doi: 10.3866/PKU.WHXB20030816
-
[3]
(3) Le, H. A.; Frankcombe, T. J.; Collins, M. A. J. Phys. Chem. A 2010, 114 (40), 10783. doi: 10.1021/jp1060182
-
[4]
(4) Ramazani, S.; Frankcombe, T. J.; Andersson, S.; Collins, M. A. J. Chem. Phys. 2009, 130 (24), 244302. doi: 10.1063/1.3156805
-
[5]
(5) Moyano, G. E.; Jones, S. A.; Collins, M. A. J. Chem. Phys. 2006, 124 (12), 124318. doi: 10.1063/1.2181571
-
[6]
(6) Moyano, G. E.; Collins, M. A. Theor. Chem. Acc. 2005, 113 (4), 225. doi: 10.1007/s00214-004-0626-8
-
[7]
(7) Evenhuis, C. R.; Collins, M. A.; Lin, X.; Zhang, O. H. Amer. Chem. Soc. 2004, 227, 259.
-
[8]
(8) Moyano, G. E.; Pearson, D.; Collins, M. A. J. Chem. Phys. 2004, 121 (24), 12396. doi: 10.1063/1.1810479
-
[9]
(9) Castillo, J. F.; Aoiz, F. J.; Bañares, L.; Collins, M. A. J. Phys. Chem. A 2004, 108 (32), 6611. doi: 10.1021/jp048366b
-
[10]
(10) Moyano, G. E.; Collins, M. A. J. Chem. Phys. 2003, 119 (11), 5510. doi: 10.1063/1.1599339
-
[11]
(11) Fuller, R. O.; Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 2001, 114 (24), 10711. doi: 10.1063/1.1377602
-
[12]
(12) Song, K.; Collins, M. A. Chem. Phys. Lett. 2001, 335 (5), 481.
-
[13]
(13) Collins, M. A.; Zhang, D. H. J. Chem. Phys. 1999, 111 (22), 9924. doi: 10.1063/1.480344
-
[14]
(14) Bettens, R. P. A.; Hansen, T. A.; Collins, M. A. J. Chem. Phys. 1999, 111 (14), 6322. doi: 10.1063/1.479937
-
[15]
(15) Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1996, 104 (12), 4600. doi: 10.1063/1.471207
-
[16]
(16) Li, H.; Le, R. R. J. J. Chem. Phys. 2006, 125 (4), 044307. doi: 10.1063/1.2212933
-
[17]
(17) Li, A. Y.; Xie, D. Q. J. Chem. Phys. 2010, 133 (14), 144306. doi: 10.1063/1.3490642
-
[18]
(18) Wu, T.; Manthe, U. J. Chem. Phys. 2003, 119 (1), 14. doi: 10.1063/1.1577328
-
[19]
(19) Ishida, T.; Schatz, G. C. J. Chem. Phys. 1997, 107 (9), 3558. doi: 10.1063/1.474695
-
[20]
(20) Takata, T.; Taketsugu, T.; Hirao, K.; Gordon, M. S. J. Chem. Phys. 1998, 109 (11), 4281. doi: 10.1063/1.477032
-
[21]
(21) Crespos, C.; Collins, M. A. J. Chem. Phys. 2004, 120 (5), 2392. doi: 10.1063/1.1637337
-
[22]
(22) Wang, M.; Sun, X.; Bian, W.; Cai, Z. J. Chem. Phys. 2006, 124 (23), 234311. doi: 10.1063/1.2203610
-
[23]
(23) Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M. J. Chem. Phys. 2007, 126 (18), 184108. doi: 10.1063/1.2730798
-
[24]
(24) Corchado, J. C.; Bravo, J. L.; Espinosa-Garcia, J. J. Chem. Phys. 2009, 130 (18), 184314. doi: 10.1063/1.3132223
-
[25]
(25) Varandas, A. J. C.; Brown, F. B.; Mead, C. A. J. Chem. Phys. 1987, 86, 6258. doi: 10.1063/1.452463
-
[26]
(26) Bowman, J. M.; Czako, G.; Fu, B. Phys. Chem. Chem. Phys. 2011, 13 (18), 8094. doi: 10.1039/c0cp02722g
-
[27]
(27) Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R. J. Chem. Phys. 2009, 130 (13), 134101. doi: 10.1063/1.3095491
-
[28]
(28) Le, H. M.; Raff, L. M. J. Phys. Chem. A 2010, 114 (1), 45. doi: 10.1021/jp907507z
-
[29]
(29) Sumpter, B. G.; Noid, D. W. Chem. Phys. Lett. 1992, 192 (5), 455.
-
[30]
(30) Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. J. Chem. Phys. 1995, 103 (10), 4129. doi: 10.1063/1.469597
-
[31]
(31) Connor, J. N. L. Comput. Phys. Commun. 1979, 17, 117. doi: 10.1016/0010-4655(79)90075-4
-
[32]
(32) Eyring, H.; Polanyi, M. Phys. Chem. Abt. B 1931, 12, 279.
-
[33]
(33) Sato, S. J. Chem. Phys. 1955, 23 (12), 2465.
-
[34]
(34) Aguado, A.; Paniagua, M. J. Chem. Phys. 1992, 96 (2), 1265. doi: 10.1063/1.462163
-
[1]
-
-
[1]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[2]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[3]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[4]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[5]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[6]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[7]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[8]
Liangyu Gong , Jie Wang , Fengyu Du , Lubin Xu , Chuanli Ma , Shihai Yan , Zhuwei Song , Fuheng Liu , Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023
-
[9]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[10]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[11]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[12]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[13]
Jiantao Zai , Hongjin Chen , Xiao Wei , Li Zhang , Li Ma , Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023
-
[14]
Xiaohang Qiu , Yang Liu , Fei Ding , Jie Han , Yijun Li . Construction of a Demonstration Center for Experimental Chemistry Education in the New Era. University Chemistry, 2024, 39(7): 26-31. doi: 10.12461/PKU.DXHX202404112
-
[15]
Junlin Yan , Changhao Wang , Quanguo Zhai , Chenghui Liu , Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005
-
[16]
Haorui Gu , Ning Li , Zhanxiang Liu , Xufeng Lin . Construction and Development of Chemistry Experimental Teaching Center under the Background of the “101 Plan”. University Chemistry, 2024, 39(7): 110-115. doi: 10.12461/PKU.DXHX202405022
-
[17]
Nuo Zhang , Xiaojun Sun , Hongmin Ma , Yan Li , Xiang Ren , Dan Wu , Chuannan Luo , Qin Wei . Construction and Practice of National Experimental Teaching Demonstration Center of Applied Chemistry. University Chemistry, 2024, 39(7): 116-120. doi: 10.12461/PKU.DXHX202405031
-
[18]
Yan Zhao , Weiping Luo , Haoran Liu , Yongqing Kuang , Zhaoyang Wu , Weijun Yang , Yongjun Li , Dongcai Guo . Construction and Practice of the Chemistry and Chemical Engineering Experimental Teaching Center of Hunan University. University Chemistry, 2024, 39(7): 147-152. doi: 10.12461/PKU.DXHX202405059
-
[19]
Yang Liu , Ying Yu , Yilei Wang , Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069
-
[20]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[1]
Metrics
- PDF Downloads(51)
- Abstract views(418)
- HTML views(21)