Citation: MA Yi-Ran, ZHOU Wei, CAO Wei, ZHENG Jin-Long, GUO Lin. Preparation of Hierarchical Ni@CuS Composites and the Application of the Enhanced Catalysis for 4-Nitrophenol Reduction[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1949-1955. doi: 10.3866/PKU.WHXB201509091 shu

Preparation of Hierarchical Ni@CuS Composites and the Application of the Enhanced Catalysis for 4-Nitrophenol Reduction

  • Received Date: 24 July 2015
    Available Online: 9 September 2015

    Fund Project: 国家自然科学基金(11079002, 51472014) (11079002, 51472014)高等学校全国优秀博士学位论文作者专项资金(201331)资助项目 (201331)

  • Three types of hierarchical, flower-like CuS particles were prepared by a hydrothermal method and samples were formulated as thin nanosheets. The aggregation density of the sheets could be readily controlled with the aid of polyvinylpyrrolidone (PVP) or 1,3,5-benzenetricarboxylic acid (BTC) organic molecules. The three substrates were then used for the growth of nickel nanocatalysts and the structures of the composites characterized by environment scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Ultraviolet-visible absorption spectrometry was applied to study the catalytic reduction of 4-nitrophenol. Results show that a sample of Ni nanoparticles (Ni NPs, ~5 nm in diameter) grown on CuS micro-flowers, composed of the sparsest nanosheets (Ni@SUB2) with an ultralow loading of 0.469% (w), showed the best catalytic properties amongst the three Ni@SUB composites. During reduction of 4-nitrophenol with initial 4-nitrophenol concentrations of 0.2 mmol·L-1, the Ni@SUB2 showed almost 100% transformation within 4 min, while the same quantity of pure Ni NPs showed a transformation of only ~43%. The enhanced catalytic properties for 4-nitrophenol degradation could be ascribed to well-dispersed Ni NPs supported on the CuS substrate providing greater numbers of catalytic active sites. Furthermore, because of CuS is insoluble, it can be easily collected by centrifugation, which can be environmentally beneficial.

  • 加载中
    1. [1]

      (1) Bu, F. X.; Hu, M.; Xu, L.; Meng, Q.; Mao, G. Y.; Jiang, D. M.; Jiang, J. S. Chem. Commun. 2014, 50, 8543. doi: 10.1039/C4CC02909G

    2. [2]

      (2) Butt, F. K.; Tahir, M.; Cao, C. B.; Idrees, F.; Ahmed, R.; Khan, W. S.; Ali, Z.; Mahmood, N.; Tanveer, M.; Mahmood, A.; Aslam, I. ACS Appl. Mater. Interfaces 2014, 6, 13635. doi: 10.1021/am503136h

    3. [3]

      (3) Liu, Y. T.; Duan, Z. Q.; Xie, X. M.; Ye, X. Y. Chem. Commun. 2013, 49, 1642. doi: 10.1039/c3cc38567a

    4. [4]

      (4) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012, 28, 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012, 28, 2214.] doi: 10.3866/PKU.WHXB201206122

    5. [5]

      (5) Chen, F. X.; Fan, W. Q.; Zhou, T. Y.; Huang, W. H. Acta Phys. -Chim. Sin. 2013, 29, 167. [陈拂晓, 范伟强, 周腾云, 黄卫红. 物理化学学报, 2013, 29, 167.] doi: 10.3866/PKU.WHXB 201210291

    6. [6]

      (6) Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Angew. Chem. Int. Edit. 2014, 53, 12517.

    7. [7]

      (7) el, S.; Chen, F.; Cai, W. B. Small 2014, 10, 631. doi: 10.1002/smll.201301174

    8. [8]

      (8) Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangre rio, C.; Miszta, K.; Ghosh, S.; Pellegrino, T.; Manna, L. J. Am. Chem. Soc.2013, 135, 17630. doi: 10.1021/ja409754v

    9. [9]

      (9) Guo, L. R.; Panderi, I.; Yan, D. D.; Szulak, K.; Li, Y. J.; Chen, Y. T.; Ma, H.; Niesen, D. B.; Seeram, N.; Ahmed, A.; Yan, B. F.; Pantazatos, D.; Lu, W. ACS Nano 2013, 7, 8780. doi: 10.1021/nn403202w

    10. [10]

      (10) Kim, M.; Park, J. C.; Kim, A.; Park, K. H.; Song, H. Langmuir 2012, 28, 6441. doi: 10.1021/la300148e

    11. [11]

      (11) Yang, Y.; Ren, Y.; Sun, C. J.; Hao, S. J. Green Chem. 2014, 16, 2273. doi: 10.1039/c3gc42121j

    12. [12]

      (12) Li, P. Z.; Aijaz, A.; Xu, Q. Angew. Chem. Int. Edit. 2012, 51, 6753. doi: 10.1002/anie.201202055

    13. [13]

      (13) Jiao, Z. F.; Dong, L. L.; Guo, X. N.; Jin, G. Q.; Guo, X. Y.; Wang, X. M. Acta Phys. -Chim. Sin. 2014, 30, 1941. [焦志锋, 董莉莉, 郭晓宁, 靳国强, 郭向云, 王晓敏. 物理化学学报, 2014, 30, 1941.] doi: 10.3866/PKU.WHXB201408181

    14. [14]

      (14) Zhu, Z. J.; Zhai, Y. L.; Dong, S. J. ACS Appl. Mater. Interfaces 2014, 6, 16721. doi: 10.1021/am503689t

    15. [15]

      (15) Wu, T.; Cai, W. Y.; Zhang, P.; Song, X. F.; Gao, L. RSC Adv. 2013, 3, 23976. doi: 10.1039/c3ra43203c

    16. [16]

      (16) Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S. RSC Adv. 2015, 5, 18172. doi: 10.1039/C5RA01889G

    17. [17]

      (17) Yang, Y.; Zhang, Y.; Sun, C. J.; Li, X. S.; Zhang, W.; Ma, X. H.; Ren, Y.; Zhang, X. ChemCatChem 2014, 6, 3084. doi: 10.1002/cctc.201402607

    18. [18]

      (18) Zhang, S. H.; Gai, S. L.; He, F.; Ding, S. J.; Li, L.; Yang, P. P. Nanoscale 2014, 6, 11181. doi: 10.1039/C4NR02096K

    19. [19]

      (19) Jiang, Z. F.; Xie, J. M.; Jiang, D. L.; Jing, J. J.; Qin, H. R. CrystEngComm 2012, 14, 4601. doi: 10.1039/c2ce25205h

    20. [20]

      (20) Wu, Y. G.; Wen, M.; Wu, Q. S.; Fang, H. J. Phys. Chem. C 2014, 118, 6307. doi: 10.1021/jp412711b

    21. [21]

      (21) Gu, X. M.; Qi, W.; Xu, X. Z.; Sun, Z. H.; Zhang, L. Y.; Liu, W.; Pan, X. L.; Su, D. S. Nanoscale 2014, 6, 6609. doi: 10.1039/c4nr00826j

    22. [22]

      (22) Xu, D.; Diao, P.; Jin, T.; Wu, Q. Y.; Liu, X. F.; Guo, X.; ng, H. Y.; Li, F.; Xiang, M.; Yu, R. H. ACS Appl. Mater. Interfaces 2015, 7, 16738. doi:10.1021/acsami.5b04504

    23. [23]

      (23) Zhou, Y.; Zhu, Y. H.; Yang, X. L.; Huang, J. F.; Chen, W.; Lv, X. M.; Li, C.Y.; Li, C. Z. RSC Adv. 2015, 5, 50454. doi: 10.1039/C5RA08243A

    24. [24]

      (24) Pachfule, P.; Kandambeth, S.; Díaz, D. D.; Banerjee, R. Chem. Commun. 2014, 50, 3169. doi: 10.1039/c3cc49176e

    25. [25]

      (25) Zhao, X. H.; Li, Q.; Ma, X. M.; Xiong, Z.; Quan, F. Y.; Xia, Y. Z. RSC Adv. 2015, 5, 49534. doi: 10.1039/C5RA07821K

    26. [26]

      (26) Shin, K. S.; Cho, Y. K.; Choi, J. Y.; Kim, K. Appl. Catal. A 2012, 413-414, 170.

    27. [27]

      (27) An, Q.; Yu, M.; Zhang, Y. T.; Ma, W. F.; Guo, J.; Wang, C. C. J. Phys. Chem. C 2012, 116, 22432. doi: 10.1021/jp307629m

    28. [28]

      (28) Baruah, B.; Gabriel, G. J.; Akbashev, M. J.; Booher, M. E. Langmuir 2013, 29, 4225. doi: 10.1021/la305068p


  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    3. [3]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

Metrics
  • PDF Downloads(108)
  • Abstract views(566)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return