Citation: ZHANG Dong-Feng, ZHANG Yan, ZHANG Hua, QI Juan-Juan, SHANG Yang, GUO Lin. Cavity-Tunable Cu2O Spherical Nanostructures and Their NO2 Gas Sensing Properties[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 2005-2010. doi: 10.3866/PKU.WHXB201509071
-
We report the preparation of cavity-controlled Cu2O nanospheres, having various mesoporous, hollow, and solid structures, by simply adjusting the OH- concentration and the release rate of Cu2+ with the assistance of polyvinyl pyrrolidone (PVP). It indicates that the OH- diffusion kinetics is the key factor that determines the morphology of the products. For [OH-] > 0.05 mol·L-1, the high chemical potential made them rapidly diffuse into the PVP micelle interiors. Adsorbed Cu2+ on the PVP produced Cu(OH)2, which was subsequently reduced to Cu2O. After re-crystallization, Cu2O solid spheres formed. For [OH-] < 0.025 mol·L-1, the OH- diffusion rate was reduced, and the Cu(OH)2 layer on the PVP micelles blocked diffusion into the interior. After re-crystallization, Cu2O hollow spheres had large cavities (~220 nm). For 0.025 mol·L-1 < [OH-] < 0.05 mol·L-1, hollow spheres with smaller cavities (30-60 nm) formed. When an aqueous NH3 solution was the OH- source, although the concentration of OH- is low, the small amount of Cu(OH)2 formed with the limited Cu2+ was not enough to block OH- diffusion into the micelles. The free NH3 and the low OH- concentration did not promote re-crystallization; thus, mesoporous Cu2O spheres were formed. We characterized NO2 gas sensing of the three structures. The porous structures exhibited more sensitivity than did the hollow or solid structures. Together with the specific surface area data, the improved gas sensitivity suggests that the open structure of the mesoporous spheres facilitates NO2 diffusion and O2 adsorption.
-
Keywords:
-
Cu2O
, - Nanosphere,
- Cavity-tunable,
- Gas sensitivity,
- Diffusion-controlled
-
-
-
[1]
(1) Kuang, Q.; Wang, X.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Accounts Chem. Res. 2014, 47, 308. doi: 10.1021/ar400092x
-
[2]
(2) Kim, H. J.; Lee, J. H. Sens. Actuator B-Chem. 2014, 192, 607. doi: 10.1016/j.snb.2013.11.005
-
[3]
(3) Meng, H.; Yang, W.; Ding, K.; Feng, L.; Guan, Y. F. J. Mater. Chem. A 2015, 3, 1174. doi: 10.1039/C4TA06024E
-
[4]
(4) Zhang, S. S.; Zhang, G. L.; He, P.; Lei, W.; Dong, F. Q.; Yang, D. M.; Suo, Z. R. Anal. Methods 2015, 7, 2747. doi: 10.1039/C4AY03001J
-
[5]
(5) Zhou, L. S.; Shen, F. P.; Tian, X. K.; Wang, D. H.; Zhang, T.; Chen, W. Nanoscale 2013, 4, 1564.
-
[6]
(6) Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. J. Am. Chem. Soc. 2012, 134, 4905. doi: 10.1021/ja211683m
-
[7]
(7) Chen, L. C. Mater. Sci. Semicond. Process. 2013, 16, 1172. doi: 10.1016/j.mssp.2012.12.028
-
[8]
(8) Xiong, L.; Huang, S.; Yang, X.; Qiu, M.; Chen, Z.; Yu, Y. Electrochim. Acta 2011, 56, 2735. doi: 10.1016/j.electacta.2010.12.054
-
[9]
(9) Shang, Y.; Chen, Y.; Shi, Z. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2013, 29, 1819. [商旸, 陈阳, 施湛斌, 张东凤, 郭林. 物理化学学报, 2013, 29, 1819.] doi: 10.3866/PKU.WHXB201305281
-
[10]
(10) Wang, J.; Ma, J.; Li, X. J.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Chem. Commun. 2014, 50, 14237. doi: 10.1039/C4CC06869F
-
[11]
(11) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O'Brien, S. Nano Lett. 2006, 6, 2095. doi: 10.1021/nl061457v
-
[12]
(12) Morales, J.; Sánchez, L.; Bijani, S.; Martínez, L.; Gabás, M.; Ramos-Barrado, J. R. Electrochem. Solid State 2005, 8, A159.
-
[13]
(13) Xu, Y. T.; Guo, Y; Li, C.; Zhou, X. Y.; Tucker, M. C.; Fu, X. Z.; Sun, R.; Wong, C. P. Nano Energy 2015, 11, 38. doi: 10.1016/j.nanoen.2014.10.011
-
[14]
(14) Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. J. Mater. Chem. 2009, 19, 5220. doi: 10.1039/b816349a
-
[15]
(15) Susman, M. D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. ACS Nano 2014, 8, 162. doi: 10.1021/nn405891g
-
[16]
(16) Jiao, S. H.; Xu, D. S.; Xu, L. F.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28, 2436. [焦淑红, 徐东升, 许荔芬, 张晓光. 物理化学学报, 2012, 28, 2436.] doi:10.3866/PKU.WHXB201209145
-
[17]
(17) Lu, C. H.; Qi, L. M.; Yang, J. H.; Wang, X. Y.; Zhang, D. Y.; Xie, J. L. Ma, J. M. Adv. Mater. 2005, 17, 2562.
-
[18]
(18) Kuo, C. H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815. doi: 10.1021/ja804625s
-
[19]
(19) Wang, W. Z.; Wang, G. H.; Wang, X. S.; Zhan, Y. J.; Liu, Y. K.; Zheng, C. L. Adv. Mater. 2002, 14, 67.
-
[20]
(20) Chen, L.; Shet, S.; Tang, H. W.; Wang, H. L.; Deutsch, T.; Yan, Y. F.; Turner, J.; Al-Jassim, M. J. Mater. Chem. 2010, 20, 6962. doi: 10.1039/c0jm01228a
-
[21]
(21) Siegfried, M. J.; Choi, K. S. Adv. Mater. 2004, 16, 1743.
-
[22]
(22) Siegfried, M. J.; Choi, K. S. J. Am. Chem. Soc. 2006, 128, 10356. doi: 10.1021/ja063574y
-
[23]
(23) Shang, Y.; Shao, Y. M.; Zhang, D. F.; Guo, L. Angew. Chem. Int. Edit. 2014, 53, 11514. doi: 10.1002/anie.201406331
-
[24]
(24) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 297. [罗小林, 韩银凤, 杨德锁, 陈亚芍. 物理化学学报, 2012, 28, 297.] doi: 10.3866/PKU. WHXB201112012
-
[25]
(25) Sun, D.; Yin, P. G.; Guo, L. Acta Phys. -Chim. Sin. 2011, 27, 1543. [孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27, 1543.] doi: 10.3866/PKU.WHXB20110619
-
[26]
(26) Yang, S. Y.; Zhang, S. S.; Wang, H. J.; Yu, H.; Fang, Y. P.; Peng, F. RSC Adv. 2014, 4, 43024. doi: 10.1039/C4RA07593E
-
[27]
(27) Xu, Z.; Xie, Y.; Xu, F.; Xu, D.; Liu, X. H. Inorg. Chem. Commun. 2004, 7, 417. doi: 10.1016/j.inoche.2003.12.031
-
[28]
(28) Teng, X. W.; Han, W. Q.; Ku, W.; Hucker, M. Angew. Chem. Int. Edit. 2008, 47, 2055.
-
[29]
(29) Zhang, D. F.; Sun, L. D.; Yin, J. L.; Yan, C. H.; Wang, R. M. J. Phys. Chem. B 2005, 109, 8786. doi: 10.1021/jp050631l
-
[30]
(30) Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Science 2000, 289, 751. doi: 10.1126/science.289.5480.751
-
[31]
(31) Penn, R. L.; Banfield, J. F. Science 1998, 281, 969. doi: 10.1126/science.281.5379.969
-
[32]
(32) Shishiyanu, S. T.; Shishiyanu, T. S.; Lupan, O. I. Sens. Actuators B 2006, 113, 468. doi: 10.1016/j.snb.2005.03.061
-
[1]
-
-
[1]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[2]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[3]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[4]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[5]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[6]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[7]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[8]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[9]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[10]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[15]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[16]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[19]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[20]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[1]
Metrics
- PDF Downloads(82)
- Abstract views(325)
- HTML views(0)