Citation: ZHANG Dong-Feng, ZHANG Yan, ZHANG Hua, QI Juan-Juan, SHANG Yang, GUO Lin. Cavity-Tunable Cu2O Spherical Nanostructures and Their NO2 Gas Sensing Properties[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 2005-2010. doi: 10.3866/PKU.WHXB201509071 shu

Cavity-Tunable Cu2O Spherical Nanostructures and Their NO2 Gas Sensing Properties

  • Received Date: 22 May 2015
    Available Online: 7 September 2015

    Fund Project: 国家自然科学基金(21173015)资助项目 (21173015)

  • We report the preparation of cavity-controlled Cu2O nanospheres, having various mesoporous, hollow, and solid structures, by simply adjusting the OH- concentration and the release rate of Cu2+ with the assistance of polyvinyl pyrrolidone (PVP). It indicates that the OH- diffusion kinetics is the key factor that determines the morphology of the products. For [OH-] > 0.05 mol·L-1, the high chemical potential made them rapidly diffuse into the PVP micelle interiors. Adsorbed Cu2+ on the PVP produced Cu(OH)2, which was subsequently reduced to Cu2O. After re-crystallization, Cu2O solid spheres formed. For [OH-] < 0.025 mol·L-1, the OH- diffusion rate was reduced, and the Cu(OH)2 layer on the PVP micelles blocked diffusion into the interior. After re-crystallization, Cu2O hollow spheres had large cavities (~220 nm). For 0.025 mol·L-1 < [OH-] < 0.05 mol·L-1, hollow spheres with smaller cavities (30-60 nm) formed. When an aqueous NH3 solution was the OH- source, although the concentration of OH- is low, the small amount of Cu(OH)2 formed with the limited Cu2+ was not enough to block OH- diffusion into the micelles. The free NH3 and the low OH- concentration did not promote re-crystallization; thus, mesoporous Cu2O spheres were formed. We characterized NO2 gas sensing of the three structures. The porous structures exhibited more sensitivity than did the hollow or solid structures. Together with the specific surface area data, the improved gas sensitivity suggests that the open structure of the mesoporous spheres facilitates NO2 diffusion and O2 adsorption.

  • 加载中
    1. [1]

      (1) Kuang, Q.; Wang, X.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Accounts Chem. Res. 2014, 47, 308. doi: 10.1021/ar400092x

    2. [2]

      (2) Kim, H. J.; Lee, J. H. Sens. Actuator B-Chem. 2014, 192, 607. doi: 10.1016/j.snb.2013.11.005

    3. [3]

      (3) Meng, H.; Yang, W.; Ding, K.; Feng, L.; Guan, Y. F. J. Mater. Chem. A 2015, 3, 1174. doi: 10.1039/C4TA06024E

    4. [4]

      (4) Zhang, S. S.; Zhang, G. L.; He, P.; Lei, W.; Dong, F. Q.; Yang, D. M.; Suo, Z. R. Anal. Methods 2015, 7, 2747. doi: 10.1039/C4AY03001J

    5. [5]

      (5) Zhou, L. S.; Shen, F. P.; Tian, X. K.; Wang, D. H.; Zhang, T.; Chen, W. Nanoscale 2013, 4, 1564.

    6. [6]

      (6) Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. J. Am. Chem. Soc. 2012, 134, 4905. doi: 10.1021/ja211683m

    7. [7]

      (7) Chen, L. C. Mater. Sci. Semicond. Process. 2013, 16, 1172. doi: 10.1016/j.mssp.2012.12.028

    8. [8]

      (8) Xiong, L.; Huang, S.; Yang, X.; Qiu, M.; Chen, Z.; Yu, Y. Electrochim. Acta 2011, 56, 2735. doi: 10.1016/j.electacta.2010.12.054

    9. [9]

      (9) Shang, Y.; Chen, Y.; Shi, Z. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2013, 29, 1819. [商旸, 陈阳, 施湛斌, 张东凤, 郭林. 物理化学学报, 2013, 29, 1819.] doi: 10.3866/PKU.WHXB201305281

    10. [10]

      (10) Wang, J.; Ma, J.; Li, X. J.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Chem. Commun. 2014, 50, 14237. doi: 10.1039/C4CC06869F

    11. [11]

      (11) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O'Brien, S. Nano Lett. 2006, 6, 2095. doi: 10.1021/nl061457v

    12. [12]

      (12) Morales, J.; Sánchez, L.; Bijani, S.; Martínez, L.; Gabás, M.; Ramos-Barrado, J. R. Electrochem. Solid State 2005, 8, A159.

    13. [13]

      (13) Xu, Y. T.; Guo, Y; Li, C.; Zhou, X. Y.; Tucker, M. C.; Fu, X. Z.; Sun, R.; Wong, C. P. Nano Energy 2015, 11, 38. doi: 10.1016/j.nanoen.2014.10.011

    14. [14]

      (14) Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. J. Mater. Chem. 2009, 19, 5220. doi: 10.1039/b816349a

    15. [15]

      (15) Susman, M. D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. ACS Nano 2014, 8, 162. doi: 10.1021/nn405891g

    16. [16]

      (16) Jiao, S. H.; Xu, D. S.; Xu, L. F.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28, 2436. [焦淑红, 徐东升, 许荔芬, 张晓光. 物理化学学报, 2012, 28, 2436.] doi:10.3866/PKU.WHXB201209145

    17. [17]

      (17) Lu, C. H.; Qi, L. M.; Yang, J. H.; Wang, X. Y.; Zhang, D. Y.; Xie, J. L. Ma, J. M. Adv. Mater. 2005, 17, 2562.

    18. [18]

      (18) Kuo, C. H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815. doi: 10.1021/ja804625s

    19. [19]

      (19) Wang, W. Z.; Wang, G. H.; Wang, X. S.; Zhan, Y. J.; Liu, Y. K.; Zheng, C. L. Adv. Mater. 2002, 14, 67.

    20. [20]

      (20) Chen, L.; Shet, S.; Tang, H. W.; Wang, H. L.; Deutsch, T.; Yan, Y. F.; Turner, J.; Al-Jassim, M. J. Mater. Chem. 2010, 20, 6962. doi: 10.1039/c0jm01228a

    21. [21]

      (21) Siegfried, M. J.; Choi, K. S. Adv. Mater. 2004, 16, 1743.

    22. [22]

      (22) Siegfried, M. J.; Choi, K. S. J. Am. Chem. Soc. 2006, 128, 10356. doi: 10.1021/ja063574y

    23. [23]

      (23) Shang, Y.; Shao, Y. M.; Zhang, D. F.; Guo, L. Angew. Chem. Int. Edit. 2014, 53, 11514. doi: 10.1002/anie.201406331

    24. [24]

      (24) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 297. [罗小林, 韩银凤, 杨德锁, 陈亚芍. 物理化学学报, 2012, 28, 297.] doi: 10.3866/PKU. WHXB201112012

    25. [25]

      (25) Sun, D.; Yin, P. G.; Guo, L. Acta Phys. -Chim. Sin. 2011, 27, 1543. [孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27, 1543.] doi: 10.3866/PKU.WHXB20110619

    26. [26]

      (26) Yang, S. Y.; Zhang, S. S.; Wang, H. J.; Yu, H.; Fang, Y. P.; Peng, F. RSC Adv. 2014, 4, 43024. doi: 10.1039/C4RA07593E

    27. [27]

      (27) Xu, Z.; Xie, Y.; Xu, F.; Xu, D.; Liu, X. H. Inorg. Chem. Commun. 2004, 7, 417. doi: 10.1016/j.inoche.2003.12.031

    28. [28]

      (28) Teng, X. W.; Han, W. Q.; Ku, W.; Hucker, M. Angew. Chem. Int. Edit. 2008, 47, 2055.

    29. [29]

      (29) Zhang, D. F.; Sun, L. D.; Yin, J. L.; Yan, C. H.; Wang, R. M. J. Phys. Chem. B 2005, 109, 8786. doi: 10.1021/jp050631l

    30. [30]

      (30) Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Science 2000, 289, 751. doi: 10.1126/science.289.5480.751

    31. [31]

      (31) Penn, R. L.; Banfield, J. F. Science 1998, 281, 969. doi: 10.1126/science.281.5379.969

    32. [32]

      (32) Shishiyanu, S. T.; Shishiyanu, T. S.; Lupan, O. I. Sens. Actuators B 2006, 113, 468. doi: 10.1016/j.snb.2005.03.061


  • 加载中
    1. [1]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    2. [2]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    10. [10]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(82)
  • Abstract views(363)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return