Citation: YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of /Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1932-1938. doi: 10.3866/PKU.WHXB201509064 shu

Preparation and Characterization of /Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance

  • Received Date: 25 June 2015
    Available Online: 6 September 2015

    Fund Project: 国家自然科学基金资助项目(21067004, 21263005, 21567008) (21067004, 21263005, 21567008) 江西省自然科学基金青年科学基金计划(20133BAB21003) (20133BAB21003) 江西省教育厅高等学校科技落地计划项目(KJLD14046) (KJLD14046) 江西省青年科学家培养项目(20122BCB23015) (20122BCB23015)

  • Graphene oxide ( ) was fabricated from graphite powder by Hummers oxidation method and then, under ultrasonic irradiation, a series of /Ag3PO4 composite photocatalysts (4% (w, mass fraction) /Ag3PO4, 8% /Ag3PO4, 16% /Ag3PO4, 32% /Ag3PO4) were synthesized by a facile liquid deposition process. The products were characterized by N2-physical adsorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, Fourier transform infrared (FT-IR) spectroscopg, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of content on the photocatalytic activity of Ag3PO4 was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results show that can be easily dispersed into Ag3PO4, producing a well-connected /Ag3PO4 composite. Coupling of largely enhanced the surface area of the catalyst and the adsorption of MO. At the optimal content (16%), the degradation rate of MO over /Ag3PO4 was 83% after 120 min of light irradiation, exhibiting 7.5 times higher activity than that of pure Ag3PO4. The increase in photocatalytic activity and stability can be mainly attributed to the coupling of , which increased the surface area and suppressed the recombination rate of electron-hole (e-/h+) pairs and generated greater numbers of active free radicals.

  • 加载中
    1. [1]

      (1) Zhou, W. Q.; Yu, C. L.; Fan, Q. Z.; Wei, L. F.; Chen, J. C.; Yu, J. C. Chin. J. Catal. 2013, 34, 1250. [周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu, J. C. 催化学报, 2013,34, 1250.] doi: 10.1016/S1872-2067(12)60578-6

    2. [2]

      (2) Jin, R. R.; You, J. G.; Zhang, Q.; Liu, D.; Hu, S. Z.; Gui, J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1706. [金瑞瑞, 游继光, 张倩, 刘丹, 胡绍争, 桂建舟. 物理化学学报,2014, 30, 1706.] doi: 10.3866/PKU.WHXB201406272

    3. [3]

      (3) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.; Yang, K. Acta Phys.-Chim. Sin. 2012, 28, 647. [余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu J. C, 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051

    4. [4]

      (4) Yu, C. L.; Yang, K.; Yu, J. C.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27, 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27, 505.] doi: 10.3866/PKU.WHXB20110230

    5. [5]

      (5) Yu, G. H.; Xu, L. L.; Wang, P.; Wang, X. F.; Yu, J. G. Appl. Catal. B 2014, 144, 75. doi: 10.1016/j.apcatb.2013.06.023

    6. [6]

      (6) Yi, Z. G.; Ye, J. H.; Kikugawan, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; Withers, R. L. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780

    7. [7]

      (7) Ge, M.; Tan, M. M.; Cui, G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107. [葛明, 谭勉勉, 崔广华. 物理化学学报, 2014, 30, 2107.] doi: 10.3866/PKU.WHXB201409041

    8. [8]

      (8) Wang, X. F.; Li, S. F.; Yu, H. G.; Yu, J. G.; Liu, S. W. Chem. -Eur. J. 2011, 17, 7777. doi: 10.1002/chem.201101032

    9. [9]

      (9) Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 2012, 116, 15519. doi: 10.1021/jp305669f

    10. [10]

      (10) Ouyang, S. X.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 7757. doi: 10.1021/ja110691t

    11. [11]

      (11) Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Am. Chem. Soc. 2004, 126, 13406. doi: 10.1021/ja048296m

    12. [12]

      (12) Wang, D.; Kako, T.; Ye, J. J. Phys. Chem. C 2009, 113, 3785.

    13. [13]

      (13) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b

    14. [14]

      (14) Yu, C. L.; Zhou, W. Q.; Yu, J. C.; Liu, H.; Wei, L. F. Chin. J. Catal. 2014, 35, 1609. [余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 催化学报, 2014, 35, 1609.] doi:10.1016/S1872-2067(14)60170-4

    15. [15]

      (15) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892. doi: 10.1002/adma.v26.6

    16. [16]

      (16) Liu, S. Q.; Wang, S.; Dai, G. P.; Lu, J.; Liu, K. Acta Phys. -Chim. Sin. 2014, 30, 2121. [刘素芹, 王松, 戴高鹏, 鲁俊, 刘科. 物理化学学报, 2014, 30, 2121.] doi: 10.3866/PKU.WHXB201409191

    17. [17]

      (17) Liu, J. B.; Yi, Y.; Shi, P. H.; Wang, Q.; Li, D. X.; Hussain, A.; Yang, M. Acta Phys. -Chim. Sin. 2014, 30, 1720. [李洁冰, 伊玉, 时鹏辉, 王倩, 李登新, Hussain A., 杨明. 物理化学学报, 2014, 30, 1720.] doi: 10.3866/PKU.WHXB201407021

    18. [18]

      (18) Zhang, Q. Q.; Li, R.; Zhang, M. M.; u, X. L. Acta Phys. -Chim. Sin. 2014, 30, 476. [张晴晴, 李容, 张萌萌, 苟兴龙. 物理化学学报, 2014, 30, 476.] doi: 10.3866/PKU.WHXB201401071

    19. [19]

      (19) Liu, J. X.; Wang, Y. F.; Wang, Y. W.; Fan, C. M. Acta Phys. -Chim. Sin. 2014, 30, 729. [刘建新, 王韵芳, 王雅文, 樊彩梅. 物理化学学报, 2014, 30, 729.] doi: 10.3866/PKU.WHXB201402243

    20. [20]

      (20) Geng, J. Y.; Zhu, X. S.; Du, Y. K. Chin. J. Inorg. Chem. 2012, 28, 357. [耿静漪, 朱新生, 杜玉扣. 无机化学学报, 2012, 28, 357.]

    21. [21]

      (21) Wang, C.; Cao, M. H.; Wang, P. F.; Ao, Y. H.; Hou, J.; Qian, J. Appl. Catal. A 2014, 473, 83. doi: 10.1016/j.apcata.2013.12.028

    22. [22]

      (22) Hu, J.; Li, H. S.; Wu, Q.; Zhao, Y.; Jiao, Q. Z. Chem. Eng. J. 2015, 263, 144. doi: 10.1016/j.cej.2014.11.007

    23. [23]

      (23) Gao, Y.; Hu, M.; Mi, B. X. J. Membr. Sci. 2014, 455, 349. doi: 10.1016/j.memsci.2014.01.011

    24. [24]

      (24) He, G. L.; Chen, M. J.; Liu, Y. Q.; Li, X.; Liu, Y. J.; Xu, Y. H. Appl. Surf. Sci. 2015, 351, 474. doi: 10.1016/j.apsusc.2015.05.159

    25. [25]

      (25) Chen, Y. L.; Zhang, C. E.; Deng, C.; Fei, P.; Zhong, M.; Su, B. T. Chin. Chem. Lett. 2013, 24, 518. doi: 10.1016/j.cclet.2013.03.034

    26. [26]

      (26) Liu, L.; Liu, J. C.; Sun, D. D. Catal. Sci. Technol. 2012, 2, 2525. doi: 10.1039/c2cy20483e

    27. [27]

      (27) Chen, G. D.; Sun, M.; Wei, Q.; Zhang, Y. F.; Zhu, B. C.; Du, B. J. Hazard. Mater. 2013, 244/245, 86.

    28. [28]

      (28) Long, M.; Cong, Y.; Li, X. K.; Cui, Z. W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263

    29. [29]

      (29) Zhao, H. M.; Su, F.; Fan, X. F.; Yu, H. T.; Wu, D.; Quan, X. Chin. J. Catal. 2012, 33, 777. [赵慧敏, 苏芳, 范新飞, 于洪涛, 吴丹, 全燮. 催化学报, 2012, 33, 777.] doi: 10.1016/S1872-2067(11)60374-4

    30. [30]

      (30) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano. Lett. 2008, 8, 36. doi: 10.1021/nl071822y

    31. [31]

      (31) Yu, C. L.; Wei, L. F.; Zhou, W. Q.; Chen, J. C.; Fan, Q. Z.; Liu, H. Appl. Surf. Sci. 2014, 319, 312. doi: 10.1016/j.apsusc.2014.05.158


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(216)
  • Abstract views(558)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return