Citation:
SUN Yin-Lu, GAO Ya-Jun, SUN Qian, ZHAO Jian-Wei. Simulation of Tensile Deformation of Twin Silver Nanowires Based on Molecular Dynamics[J]. Acta Physico-Chimica Sinica,
;2015, 31(10): 1880-1887.
doi:
10.3866/PKU.WHXB201509063
-
This study investigated the deformation behavior of <111> twin Ag nanowires with differing parallel twin boundary (TB) densities under tensile loading via molecular dynamics (MD) simulations. The effect of TB density on the ultimate stress of nanowires is discussed, and the plastic deformation mechanisms of nanowires are illustrated. The results show that, in contrast to a single crystalline nanowire with the same size, the introduction of the TB can strengthen or soften nanowires through individual deformation modes, which indicates that there exists a critical twin boundary space (TBS) (where the value of the critical 1/TBS is 0.2 nm-1). Below 0.2 nm-1, softening occurs, whereby TBs become the source of dislocations. Above 0.2 nm-1, TBs impede dislocation movement, which results in a strengthening effect. The strengthening mechanisms are divided into two types. When 1/TBS ranges from 0.2 to 0.5 nm-1, the TB-dislocation interaction is the controlling factor. Fracture opening appears within the nanowires, and voids form, with dislocation multiplication, and then spread to the surrounding regions. When 1/TBS is greater than 0.5 nm-1, TBs migrate to accommodate dislocation activity. Dislocations increase and transfer across the TBs. Shear banding is activated during the process, which contributes to the necking of nanowires. The strengthening and weakening effects caused by differences in TB density decrease with increasing temperature.
-
-
-
[1]
(1) Zhong, S.; Koch, T.; Wang, M.; Scherer, T.; Walheim, S.; Hahn, H.; Schimmel, T. Small 2009, 5 (20), 2265. doi: 10.1002/smll.v5:20
-
[2]
(2) Capolun , L.; Spearot, D. E.; Cherkaoui, M.; McDowell, D. L.; Qu, J.; Jacob, K. I. J. Mech. Phys. Solids 2007, 55 (11), 2300. doi: 10.1016/j.jmps.2007.04.001
-
[3]
(3) Jin, Z. H.; Gumbsch, P.; Albe, K.; Ma, E.; Lu, K.; Gleiter, H.; Hahn, H. Acta Mater. 2008, 56 (5), 1126. doi: 10.1016/j.actamat.2007.11.020
-
[4]
(4) Lu, L.; Sui, M. L.; Lu, K. Science 2000, 287 (5457), 1463. doi: 10.1126/science.287.5457.1463
-
[5]
(5) Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Science 2004, 304 (5669), 422. doi: 10.1126/science.1092905
-
[6]
(6) Lu, L.; Chen, X.; Huang, X.; Lu, K. Science 2009, 323 (5914), 607. doi: 10.1126/science.1167641
-
[7]
(7) Lu, K.; Lu, L.; Suresh, S. Science 2009, 324 (5925), 349. doi: 10.1126/science.1159610
-
[8]
(8) Shen, Y. F.; Lu, L.; Lu, Q. H.; Jin, Z. H.; Lu, K. Scr. Mater. 2005, 52 (10), 989. doi: 10.1016/j.scriptamat.2005.01.033
-
[9]
(9) Sangid, M. D.; Ezaz, T.; Sehitoglu, H.; Robertson, I. M. Acta Mater. 2011, 59 (1), 283. doi: 10.1016/j.actamat.2010.09.032
-
[10]
(10) Zhu, W.; Wang, H.; Yang, W. Acta Mater. 2012, 60 (20), 7112. doi: 10.1016/j.actamat.2012.09.018
-
[11]
(11) McDowell, M. T.; Leach, A. M.; Gaill, K. Nano Lett. 2008, 8 (11), 3613. doi: 10.1021/nl801526c
-
[12]
(12) Guo, X.; Xia, Y. Z. Acta Mater. 2011, 59 (6), 2350. doi: 10.1016/j.actamat.2010.12.031
-
[13]
(13) Kulkarni, Y.; Asaro, R. J. Acta Mater. 2009, 57 (16), 4835. doi: 10.1016/j.actamat.2009.06.047
-
[14]
(14) Zhang, Y. F.; Huang, H. C.; Atluri, S. N. CMES-Comp. Model. Eng. Sci 2008, 35 (3), 215.
-
[15]
(15) Ding, F.; Li, H.; Wang, J. L.; Shen, W. F.; Wang, G. H. J. Phys. -Condes. Mat. 2002, 14 (1), 113. doi: 10.1088/0953-8984/14/1/310
-
[16]
(16) Cao, A. J.; Wei, Y. G. Phys. Rev. B 2006, 74 (21), 214108. doi: 10.1103/PhysRevB.74.214108
-
[17]
(17) Deng, C.; Sansoz, F. ACS Nano 2009, 3 (10), 3001. doi: 10.1021/nn900668p
-
[18]
(18) Deng, C.; Sansoz, F. Nano Lett. 2009, 9 (4), 1517. doi: 10.1021/nl803553b
-
[19]
(19) Deng, C.; Sansoz, F. Scr. Mater. 2010, 63 (1), 50. doi: 10.1016/j.scriptamat.2010.03.005
-
[20]
(20) Deng, C.; Sansoz, F. Appl. Phys. Lett. 2009, 95 (9), 091914. 10.1033/1.3222936
-
[21]
(21) Jang, D.; Li, X.; Gao, H.; Greer, J. R. Nat. Nanotechnol. 2012, 7 (9), 594. doi: 10.1038/nnano.2012.116
-
[22]
(22) Sun, Q.; Yang, X. B.; Gao, Y. J.; Zhao, J. W. Acta Phys. -Chim. Sin. 2014, 30 (11), 2015. [孙倩, 杨雄博, 高亚军, 赵健伟. 物理化学学报, 2014, 30 (11), 2015.] doi:10.3866/PKU.WHXB201409101
-
[23]
(23) Daw, M. S.; Baskes, M. I. Riv. Patol. Clin. 1983, 50 (17), 1285.
-
[24]
(24) Verlet, L.; Verlet, L. Phys. Rev. 1967, 159 (1), 98. doi: 10.1103/PhysRev.159.98
-
[25]
(25) Nose, S. J. Chem. Phys. 1984, 81 (1), 511. doi: 10.1063/1.447334
-
[26]
(26) Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695. doi: 10.1103/PhysRevA.31.1695
-
[27]
(27) Zhao, J. W.; Yin, X.; Liang, S.; Liu, Y. H.; Wang, D. X.; Deng, S. Y.; Hou, J. Chem. Res. Chin. Univ. 2008, 24 (3), 367. doi: 10.1016/S1005-9040(08)60077-X
-
[28]
(28) Gao, Y. J.; Wang, H. B.; Zhao, J. W.; Sun, C. Q.; Wang, F. Y. Comput. Mater. Sci. 2011, 50 (10), 3032. doi: 10.1016/j.commatsci.2011.05.023
-
[29]
(29) Sun, Y. L.; Sun, W.; Fu, Y. Q.; Wang, F. Y.; Gao, Y. J.; Zhao, J. W. Comput. Mater. Sci. 2013, 79, 63. doi: 10.1016/j.commatsci.2013.06.004
-
[30]
(30) Liu, Y. H.; Zhao, J. W.; Wang, F. Y. Phys. Rev. B 2009, 80 (11), 115417. doi: 10.1103/PhysRevB.80.115417
-
[31]
(31) Wang, F. Y.; Gao, Y. J.; Zhu, T. M.; Zhao, J. W. Nanoscale Res. Lett. 2011, 6, 291. doi: 10.1186/1556-276X-6-291
-
[32]
(32) Gao, Y. J.; Fu, Y. Q.; Sun, W.; Sun, Y. L.; Wang, H. B.; Wang, F. Y.; Zhao, J. W. Comput. Mater. Sci. 2012, 55, 322. doi: 10.1016/j.commatsci.2011.11.005
-
[33]
(33) Gao, Y. J.; Wang, F. Y.; Zhu, T. M.; Zhao, J. W. Comput. Mater. Sci. 2010, 49 (4), 826. doi: 10.1016/j.commatsci.2010.06.031
-
[34]
(34) Wang, D. X.; Zhao, J. W.; Hu, S.; Yin, X.; Liang, S.; Liu, Y. H.; Deng, S. Y. Nano Lett. 2007, 7 (5), 1208. doi: 10.1021/nl0629512
-
[35]
(35) Wu, B.; Heidelberg, A.; Boland, J. J.; Sader, J. E.; Sun, X. M.; Li, Y. D. Nano Lett. 2006, 6 (3), 468. doi: 10.1021/nl052427f
-
[36]
(36) Deng, C.; Sansoz, F. Acta Mater. 2009, 57 (20), 6090. doi: 10.1016/j.actamat.2009.08.035
-
[1]
-
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[4]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[5]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[16]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[17]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[18]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[19]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[20]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[1]
Metrics
- PDF Downloads(119)
- Abstract views(508)
- HTML views(11)