Citation:
ZHAO Yi, ZHOU Jin, LIU Hui, ZHUO Shu-Ping. Reaction Mechanism and the Regioselectivity of Cu-Catalyzed Silacarboxylation of Internal Alkynes: a Density Functional Theory Study[J]. Acta Physico-Chimica Sinica,
;2015, 31(10): 1864-1871.
doi:
10.3866/PKU.WHXB201508281
-
Transition metal-catalyzed carbon-carbon bond formation utilizing CO2 is of great importance. The heteroatom functionality and CO2 are simultaneously and catalytically incorporated into unsaturated substrates to form highly functionalized carboxylic acid derivatives. Here, density functional theory (DFT) is used to study the reaction mechanisms of the Cu-catalyzed silacarboxylation of internal alkynes. Two possible paths were proposed depending on the relative positions of the substituents (path I: methyl and path II: phenyl). The calculations reveal that the initial alkyne insertion into the Cu―Si bond determined both the rate and the selectivity. In path I, the calculated free energy barrier for alkyne insertion is 112.8 kJ·mol-1, while that in path II is 127.6 kJ·mol-1. Thus, path I is more kinetically favorable than path II, which is consistent with the experimentally observed product ratio of 97 : 3. Our analysis revealed that the electronic effects of the alkyne substituents dominated the observed regioselectivity.
-
-
-
[1]
(1) Darensbourg, D. J. Chem. Rev. 2007, 107 (6), 2388. doi: 10.1021/cr068363q
-
[2]
(2) Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107 (6), 2365. doi: 10.1021/cr068357u
-
[3]
(3) Correa, A.; Martin, R. Angew. Chem. Int. Edit. 2009, 48 (34), 6201. doi: 10.1002/anie.200900667
-
[4]
(4) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47 (11), 3021. doi: 10.1039/C0CC03890C
-
[5]
(5) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114 (3), 1709. doi: 10.1021/cr4002758
-
[6]
(6) Huang, K.; Sun, C.; Shi, Z. Chem. Soc. Rev. 2011, 40 (5), 2435. doi: 10.1039/c0cs00129e
-
[7]
(7) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130 (25), 7826. doi: 10.1021/ja803435w
-
[8]
(8) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10 (13), 2681. doi: 10.1021/ol800764u
-
[9]
(9) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128 (27), 8706. doi: 10.1021/ja061232m
-
[10]
(10) Ohishi, T.; Nishimura, M.; Hou, Z. Angew. Chem. Int. Edit. 2008, 47 (31), 5792. doi: 10.1002/anie.200801857
-
[11]
(11) Takaya, J.; Tadam, S.; Ukai, K.; Iwasawa, N. Org. Lett. 2008, 10 (13), 2697. doi: 10.1021/ol800829q
-
[12]
(12) Zhang, X.; Zhang, W. Z.; Shi, L. L.; Guo, C. X.; Zhang, L. L.; Lu, X. B. Chem. Commun. 2012, 48 (50), 6292. doi: 10.1039/c2cc32045b
-
[13]
(13) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem. Int. Edit. 2010, 49 (46), 8670. doi: 10.1002/anie.201003995
-
[14]
(14) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133 (5), 1251. doi: 10.1021/ja109097z
-
[15]
(15) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134 (22), 9106. doi: 10.1021/ja303514b
-
[16]
(16) Fujihara, T.; Xu, T.; Semba, K.; Terao, J. Angew. Chem. Int. Edit. 2011, 50 (2), 523. doi: 10.1002/anie.201006292
-
[17]
(17) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130 (46), 15254. doi: 10.1021/ja806677w
-
[18]
(18) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. 2011, 13 (7), 1698. doi: 10.1021/ol2002094
-
[19]
(19) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130 (45), 14936. doi: 10.1021/ja8062925
-
[20]
(20) Li, S.; Yuan, W.; Ma, S. Angew. Chem. Int. Edit. 2011, 50 (11), 2578. doi: 10.1002/anie.201007128
-
[21]
(21) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134 (35), 14314. doi: 10.1021/ja3063474
-
[22]
(22) Fleming, I.; Roessler, F. J. Chem. Soc. Chem. Commun. 1980, 276.
-
[23]
(23) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc. Perkin Trans. 1. 1981, 2527.
-
[24]
(24) Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Edit. 2012, 51 (46), 11487. doi: 10.1002/anie. 201207148
-
[25]
(25) Boebel, T. A.; Hartwig, J. F. Organometallics 2008, 27 (22), 6013. doi: 10.1021/om800696d
-
[26]
(26) Wang, M.; Fan, T.; Lin, Z. Polyhedron 2012, 32 (1), 35. doi: 10.1016/j.poly.2011.05.016
-
[27]
(27) Ariafard, A.; Zarkoob, F.; Batebi, H.; Stranger, R.; Yates, B. F. Organometallics 2011, 30 (22), 6218. doi: 10.1021/om200744a
-
[28]
(28) Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30 (24), 6742. doi: 10.1021/om2010172
-
[29]
(29) Li, J.; Jia, G.; Lin, Z. Organometallics 2008, 27 (15), 3892. doi: 10.1021/om8002224
-
[30]
(30) Li, J.; Lin, Z. Organometallics 2009, 28 (14), 4231. doi: 10.1021/om900202q
-
[31]
(31) Fan, T.; Chen, X.; Lin, Z. Chem. Commun. 2012, 48 (88), 10808. doi: 10.1039/c2cc34542k
-
[32]
(32) An, K.; Zhu, J. Organometallics 2014, 33 (24), 7141. doi: 10.1021/om5009346
-
[33]
(33) Zhu, J.; An, K. Chemistry-An Asian Journal 2013, 8 (12), 3147.
-
[34]
(34) Zhao, Y.; Liu, Y.; Bi, S.; Liu, Y. J. Organomet. Chem. 2014, 758, 45. doi: 10.1016/j.jorganchem.2014.02.008
-
[35]
(35) Zhao, Y.; Liu, Y.; Bi, S.; Liu, Y. J. Organomet. Chem. 2013, 745-746, 166.
-
[36]
(36) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913
-
[37]
(37) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157 (3), 200. doi: 10.1016/0009-2614(89)87234-3
-
[38]
(38) Lee, C.; Yang, W.; Parr, G. Phys. Rev. B 1988, 39, 785.
-
[39]
(39) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98 (45), 11623. doi: 10.1021/j100096a001
-
[40]
(40) Fukui, K. J. Phys. Chem. 1970, 74 (23), 4161. doi: 10.1021/j100717a029
-
[41]
(41) Fukui, K. Accounts Chem. Res. 1981, 14 (12), 363. doi: 10.1021/ar00072a001
-
[42]
(42) Wachters, A. J. H. J. Chem. Phys. 1970, 52 (2), 1033.
-
[43]
(43) Hay, P. J. J. Chem. Phys. 1977, 66 (3), 1306. doi: 10.1063/1.434025
-
[44]
(44) Wang, M.; Lin, Z. Organometallics 2010, 29 (14), 3077. doi: 10.1021/om100304t
-
[45]
(45) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995. doi: 10.1021/jp9716997
-
[46]
(46) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24 (6), 669. doi: 10.1002/jcc.10189
-
[47]
(47) Tomas, J.; Mennucc, B.; Cammi, R. Chem. Rev. 2005, 105 (8), 2999. doi: 10.1021/cr9904009
-
[48]
(48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Pittsburgh, PA, 2004.
-
[49]
(49) Kleeberg, C.; Cheung, M. S.; Lin, Z.; Marder, T. B. J. Am. Chem. Soc. 2011, 133 (47), 19060. doi: 10.1021/ja208969d
-
[50]
(50) Dang, L.; Lin, Z.; Marder, T. B. Organometallics 2010, 29 (4), 917. doi: 10.1021/om901047e
-
[1]
-
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[3]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[4]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[5]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[6]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[7]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[8]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[9]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[10]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[11]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[14]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[15]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[16]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[17]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[18]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[19]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[20]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[1]
Metrics
- PDF Downloads(133)
- Abstract views(559)
- HTML views(48)