Citation: ZHAO Yi, ZHOU Jin, LIU Hui, ZHUO Shu-Ping. Reaction Mechanism and the Regioselectivity of Cu-Catalyzed Silacarboxylation of Internal Alkynes: a Density Functional Theory Study[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1864-1871. doi: 10.3866/PKU.WHXB201508281
-
Transition metal-catalyzed carbon-carbon bond formation utilizing CO2 is of great importance. The heteroatom functionality and CO2 are simultaneously and catalytically incorporated into unsaturated substrates to form highly functionalized carboxylic acid derivatives. Here, density functional theory (DFT) is used to study the reaction mechanisms of the Cu-catalyzed silacarboxylation of internal alkynes. Two possible paths were proposed depending on the relative positions of the substituents (path I: methyl and path II: phenyl). The calculations reveal that the initial alkyne insertion into the Cu―Si bond determined both the rate and the selectivity. In path I, the calculated free energy barrier for alkyne insertion is 112.8 kJ·mol-1, while that in path II is 127.6 kJ·mol-1. Thus, path I is more kinetically favorable than path II, which is consistent with the experimentally observed product ratio of 97 : 3. Our analysis revealed that the electronic effects of the alkyne substituents dominated the observed regioselectivity.
-
-
[1]
(1) Darensbourg, D. J. Chem. Rev. 2007, 107 (6), 2388. doi: 10.1021/cr068363q
-
[2]
(2) Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107 (6), 2365. doi: 10.1021/cr068357u
-
[3]
(3) Correa, A.; Martin, R. Angew. Chem. Int. Edit. 2009, 48 (34), 6201. doi: 10.1002/anie.200900667
-
[4]
(4) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47 (11), 3021. doi: 10.1039/C0CC03890C
-
[5]
(5) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114 (3), 1709. doi: 10.1021/cr4002758
-
[6]
(6) Huang, K.; Sun, C.; Shi, Z. Chem. Soc. Rev. 2011, 40 (5), 2435. doi: 10.1039/c0cs00129e
-
[7]
(7) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130 (25), 7826. doi: 10.1021/ja803435w
-
[8]
(8) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10 (13), 2681. doi: 10.1021/ol800764u
-
[9]
(9) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128 (27), 8706. doi: 10.1021/ja061232m
-
[10]
(10) Ohishi, T.; Nishimura, M.; Hou, Z. Angew. Chem. Int. Edit. 2008, 47 (31), 5792. doi: 10.1002/anie.200801857
-
[11]
(11) Takaya, J.; Tadam, S.; Ukai, K.; Iwasawa, N. Org. Lett. 2008, 10 (13), 2697. doi: 10.1021/ol800829q
-
[12]
(12) Zhang, X.; Zhang, W. Z.; Shi, L. L.; Guo, C. X.; Zhang, L. L.; Lu, X. B. Chem. Commun. 2012, 48 (50), 6292. doi: 10.1039/c2cc32045b
-
[13]
(13) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem. Int. Edit. 2010, 49 (46), 8670. doi: 10.1002/anie.201003995
-
[14]
(14) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133 (5), 1251. doi: 10.1021/ja109097z
-
[15]
(15) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134 (22), 9106. doi: 10.1021/ja303514b
-
[16]
(16) Fujihara, T.; Xu, T.; Semba, K.; Terao, J. Angew. Chem. Int. Edit. 2011, 50 (2), 523. doi: 10.1002/anie.201006292
-
[17]
(17) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130 (46), 15254. doi: 10.1021/ja806677w
-
[18]
(18) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. 2011, 13 (7), 1698. doi: 10.1021/ol2002094
-
[19]
(19) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130 (45), 14936. doi: 10.1021/ja8062925
-
[20]
(20) Li, S.; Yuan, W.; Ma, S. Angew. Chem. Int. Edit. 2011, 50 (11), 2578. doi: 10.1002/anie.201007128
-
[21]
(21) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134 (35), 14314. doi: 10.1021/ja3063474
-
[22]
(22) Fleming, I.; Roessler, F. J. Chem. Soc. Chem. Commun. 1980, 276.
-
[23]
(23) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc. Perkin Trans. 1. 1981, 2527.
-
[24]
(24) Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Edit. 2012, 51 (46), 11487. doi: 10.1002/anie. 201207148
-
[25]
(25) Boebel, T. A.; Hartwig, J. F. Organometallics 2008, 27 (22), 6013. doi: 10.1021/om800696d
-
[26]
(26) Wang, M.; Fan, T.; Lin, Z. Polyhedron 2012, 32 (1), 35. doi: 10.1016/j.poly.2011.05.016
-
[27]
(27) Ariafard, A.; Zarkoob, F.; Batebi, H.; Stranger, R.; Yates, B. F. Organometallics 2011, 30 (22), 6218. doi: 10.1021/om200744a
-
[28]
(28) Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30 (24), 6742. doi: 10.1021/om2010172
-
[29]
(29) Li, J.; Jia, G.; Lin, Z. Organometallics 2008, 27 (15), 3892. doi: 10.1021/om8002224
-
[30]
(30) Li, J.; Lin, Z. Organometallics 2009, 28 (14), 4231. doi: 10.1021/om900202q
-
[31]
(31) Fan, T.; Chen, X.; Lin, Z. Chem. Commun. 2012, 48 (88), 10808. doi: 10.1039/c2cc34542k
-
[32]
(32) An, K.; Zhu, J. Organometallics 2014, 33 (24), 7141. doi: 10.1021/om5009346
-
[33]
(33) Zhu, J.; An, K. Chemistry-An Asian Journal 2013, 8 (12), 3147.
-
[34]
(34) Zhao, Y.; Liu, Y.; Bi, S.; Liu, Y. J. Organomet. Chem. 2014, 758, 45. doi: 10.1016/j.jorganchem.2014.02.008
-
[35]
(35) Zhao, Y.; Liu, Y.; Bi, S.; Liu, Y. J. Organomet. Chem. 2013, 745-746, 166.
-
[36]
(36) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913
-
[37]
(37) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157 (3), 200. doi: 10.1016/0009-2614(89)87234-3
-
[38]
(38) Lee, C.; Yang, W.; Parr, G. Phys. Rev. B 1988, 39, 785.
-
[39]
(39) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98 (45), 11623. doi: 10.1021/j100096a001
-
[40]
(40) Fukui, K. J. Phys. Chem. 1970, 74 (23), 4161. doi: 10.1021/j100717a029
-
[41]
(41) Fukui, K. Accounts Chem. Res. 1981, 14 (12), 363. doi: 10.1021/ar00072a001
-
[42]
(42) Wachters, A. J. H. J. Chem. Phys. 1970, 52 (2), 1033.
-
[43]
(43) Hay, P. J. J. Chem. Phys. 1977, 66 (3), 1306. doi: 10.1063/1.434025
-
[44]
(44) Wang, M.; Lin, Z. Organometallics 2010, 29 (14), 3077. doi: 10.1021/om100304t
-
[45]
(45) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995. doi: 10.1021/jp9716997
-
[46]
(46) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24 (6), 669. doi: 10.1002/jcc.10189
-
[47]
(47) Tomas, J.; Mennucc, B.; Cammi, R. Chem. Rev. 2005, 105 (8), 2999. doi: 10.1021/cr9904009
-
[48]
(48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Pittsburgh, PA, 2004.
-
[49]
(49) Kleeberg, C.; Cheung, M. S.; Lin, Z.; Marder, T. B. J. Am. Chem. Soc. 2011, 133 (47), 19060. doi: 10.1021/ja208969d
-
[50]
(50) Dang, L.; Lin, Z.; Marder, T. B. Organometallics 2010, 29 (4), 917. doi: 10.1021/om901047e
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[3]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[4]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[5]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[6]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[7]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[10]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[11]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[12]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[13]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[14]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[15]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[16]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[19]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[20]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[1]
Metrics
- PDF Downloads(133)
- Abstract views(507)
- HTML views(43)