Citation: SUN Jian-Bo, XIA Yu-Qiong, YU Qiu-Hong, LIANG De-Hai. Peptide-Induced Budding and Leakage Behavior of Giant Vesicles[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1985-1990. doi: 10.3866/PKU.WHXB201508262 shu

Peptide-Induced Budding and Leakage Behavior of Giant Vesicles

  • Received Date: 4 May 2015
    Available Online: 26 August 2015

    Fund Project: 国家自然科学基金(21074005, 21174007)资助项目 (21074005, 21174007)

  • The interactions between membrane proteins and cell membranes are critical in many life processes. Giant unilamellar vesicles (GUVs) and peptides are simple but effective models of membranes and membrane proteins, respectively. Here, we designed four peptides composed of lysine (K) and leucine (L) amino acids, K14, (KL2KL2K)2, (KL2KL3)2, and K6L8, and examined their interactions with neutral and negatively charged GUVs. The peptide K14 has the largest charge density and is able to coat the GUV surface without damaging its structure. Whereas, leakage is observed in both neutral and charged GUVs in the presence of (KL2KL2K)2 and (KL2KL3)2, which can form amphiphilic α-helices in hydrophobic environments. However, the leakage rates as a function of peptide concentration are reversed for the neutral and charged GUVs. Thus, leakage occurs in two steps: absorption of peptides on the surface up to a certain level, followed by disruption of the membrane. The peptide K6L8 has the same chemical composition as (KL2KL2K)2, but induces leakage only on negatively charged GUVs, while neutral GUVs under outward budding. Conformational changes of GUVs induced by simple peptides can be attributed to the working location (on the surface or inside the membrane), and the strength of electrostatic and hydrophobic interactions. Overall, the results provide a better understanding of membrane protein mechanisms.

  • 加载中
    1. [1]

      (1) McMahon, H. T.; Gallop, J. L. Nature 2005, 438 (7068), 590. doi: 10.1038/nature04396

    2. [2]

      (2) Hinshaw, J. E.; Schmid, S. L. Nature 1995, 374 (6518), 190. doi: 10.1038/374190a0

    3. [3]

      (3) Artalejo, C. R.; Elhamdani, A.; Palfrey, H. C. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (9), 6358. doi:10.1073/pnas.082658499

    4. [4]

      (4) Antonny, B.; unon, P.; Schekman, R.; Orci, L. Embo Reports 2003, 4 (4), 419. doi: 10.1038/sj.embor.embor812

    5. [5]

      (5) Fertuck, H. C.; Salpeter, M. M. Proceedings of the National Academy of Sciences of the United States of America 1974, 71 (4), 1376. doi: 10.1073/pnas.71.4.1376

    6. [6]

      (6) Unwin, N. Journal of Molecular Biology 2005, 346 (4), 967. doi: 10.1016/j.jmb.2004.12.031

    7. [7]

      (7) Eckler, S. A.; Kuehn, R.; Gautam, M. Neuroscience 2005, 131 (3), 661. doi: 10.1016/j.neuroscience.2004.11.035

    8. [8]

      (8) Daniel, R.; Schuck, N. W.; Niv, Y. Proceedings of the National Academy of Sciences of the United States of America 2015, 112 (10), 2929. doi: 10.1073/pnas.1500975112

    9. [9]

      (9) Bentley, J. L. Commun. ACM 1980, 23 (4), 214. doi: 10.1145/358841.358850

    10. [10]

      (10) Brogden, K. A. Nature Reviews Microbiology 2005, 3 (3), 238. doi: 10.1038/nrmicro1098

    11. [11]

      (11) Holt, A.; Killian, J. A. European Biophysics Journal with Biophysics Letters 2010, 39 (4), 609. doi: 10.1007/s00249-009-0567-1

    12. [12]

      (12) Frankel, A. D.; Pabo, C. O. Cell 1988, 55 (6), 1189. doi: 10.1016/0092-8674(88)90263-2

    13. [13]

      (13) Marsden, H. R.; Tomatsu, I.; Kros, A. Chemical Society Reviews 2011, 40 (3), 1572. doi: 10.1039/C0CS00115E

    14. [14]

      (14) Liang, X. Y.; Li, L.; Qiu, F.; Yang, Y. L. Physica A-Statistical Mechanics and Its Applications 2010, 389 (19), 39651.

    15. [15]

      (15) Yang, K.; Ma, Y. Q. Journal of Physical Chemistry B 2009, 113 (4), 1048. doi: 10.1021/jp805551s

    16. [16]

      (16) Cai, C.; Wang, L.; Lin, J. Chemical Communications 2011, 47 (40), 11189. doi: 10.1039/c1cc12683k

    17. [17]

      (17) Deng, Y. B.; Hu, B. W.; Zhou, P. Acta Phys. -Chim. Sin. 2009, 25 (7), 1427. [邓益斌, 胡炳文, 周平. 物理化学学报, 2009, 25 (7), 1427.] doi: 10.3866/PKU.WHXB20090738

    18. [18]

      (18) Deng, L.; Liang, D. H. Acta Phys. -Chim. Sin. 2010, 26 (4), 862. [邓林, 梁德海. 物理化学学报, 2010, 26 (4), 862.] doi: 10.3866/PKU.WHXB20100422

    19. [19]

      (19) Wu, Q. Y.; Liang, Q. Langmuir 2014, 30 (4), 1116. doi: 10.1021/la4039123

    20. [20]

      (20) Kashiwada, A.; Hiroaki, H.; Kohda, D.; Nan , M.; Tanaka, T. Journal of the American Chemical Society 2000, 122 (2), 212. doi: 10.1021/ja993190q

    21. [21]

      (21) Beevers, A. J.; Dixon, A. M. Chemical Society Reviews 2010, 39 (6), 2146. doi: 10.1039/b912944h

    22. [22]

      (22) Shimanouchi, T.; Umakoshi, H.; Kuboi, R. Langmuir 2009, 25 (9), 4835. doi: 10.1021/la8040488

    23. [23]

      (23) Dimitrov, D. S.; Angelova, M. I. Journal of Electroanalytical Chemistry 1988, 253 (2), 323. doi: 10.1016/0022-0728(88)87069-4

    24. [24]

      (24) Estes, D. J.; Mayer, M. Colloids and Surfaces B-Biointerfaces 2005, 42 (2), 115. doi: 10.1016/j.colsurfb.2005.01.016

    25. [25]

      (25) Wheaten, S., A.; Lakshmanan, A.; Almeida, P., F. Biophysical Journal 2013, 105 (2), 432. doi: 10.1016/j.bpj.2013.05.055

    26. [26]

      (26) Sun, J.; Xia, Y.; Li, D.; Du, Q.; Liang, D. Biochim. Biophys. Acta 2014, 1838 (12), 2985. doi: 10.1016/j.bbamem.2014.08.018

    27. [27]

      (27) Nizet, V. Current Issues in Molecular Biology 2006, 8, 11.

    28. [28]

      (28) Döbereiner, H. G.; Käs, J.; Noppl, D.; Sprenger, I.; Sackmann, E. Biophysical Journal 1993, 65 (4), 1396. doi: 10.1016/S0006-3495(93)81203-7

    29. [29]

      (29) Käs, J.; Sackmann, E. Biophysical Journal 1991, 60 (4), 8254.

    30. [30]

      (30) Hristova, K.; Dempsey, C. E.; White, S. H. Biophysical Journal 2001, 80 (2), 801. doi: 10.1016/S0006-3495(01)76059-6

    31. [31]

      (31) Hong, B. B.; Qiu, F.; Zhang, H. D.; Yang, Y. L. J. Phys. Chem. B 2007, 111, 5837

    32. [32]

      (32) Su, C.; Xia, Y.; Sun, J.; Wang, N.; Zhu, L.; Chen, T.; Huang, Y.; Liang, D. Langmuir 2014, 30 (21), 6219. doi: 10.1021/la501296r


  • 加载中

Metrics
  • PDF Downloads(89)
  • Abstract views(329)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return