Citation: SUN Jian-Bo, XIA Yu-Qiong, YU Qiu-Hong, LIANG De-Hai. Peptide-Induced Budding and Leakage Behavior of Giant Vesicles[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1985-1990. doi: 10.3866/PKU.WHXB201508262
-
The interactions between membrane proteins and cell membranes are critical in many life processes. Giant unilamellar vesicles (GUVs) and peptides are simple but effective models of membranes and membrane proteins, respectively. Here, we designed four peptides composed of lysine (K) and leucine (L) amino acids, K14, (KL2KL2K)2, (KL2KL3)2, and K6L8, and examined their interactions with neutral and negatively charged GUVs. The peptide K14 has the largest charge density and is able to coat the GUV surface without damaging its structure. Whereas, leakage is observed in both neutral and charged GUVs in the presence of (KL2KL2K)2 and (KL2KL3)2, which can form amphiphilic α-helices in hydrophobic environments. However, the leakage rates as a function of peptide concentration are reversed for the neutral and charged GUVs. Thus, leakage occurs in two steps: absorption of peptides on the surface up to a certain level, followed by disruption of the membrane. The peptide K6L8 has the same chemical composition as (KL2KL2K)2, but induces leakage only on negatively charged GUVs, while neutral GUVs under outward budding. Conformational changes of GUVs induced by simple peptides can be attributed to the working location (on the surface or inside the membrane), and the strength of electrostatic and hydrophobic interactions. Overall, the results provide a better understanding of membrane protein mechanisms.
-
Keywords:
-
Peptide
, - Giant vesicle,
- Budding,
- Leakage
-
-
-
[1]
(1) McMahon, H. T.; Gallop, J. L. Nature 2005, 438 (7068), 590. doi: 10.1038/nature04396
-
[2]
(2) Hinshaw, J. E.; Schmid, S. L. Nature 1995, 374 (6518), 190. doi: 10.1038/374190a0
-
[3]
(3) Artalejo, C. R.; Elhamdani, A.; Palfrey, H. C. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (9), 6358. doi:10.1073/pnas.082658499
-
[4]
(4) Antonny, B.; unon, P.; Schekman, R.; Orci, L. Embo Reports 2003, 4 (4), 419. doi: 10.1038/sj.embor.embor812
-
[5]
(5) Fertuck, H. C.; Salpeter, M. M. Proceedings of the National Academy of Sciences of the United States of America 1974, 71 (4), 1376. doi: 10.1073/pnas.71.4.1376
-
[6]
(6) Unwin, N. Journal of Molecular Biology 2005, 346 (4), 967. doi: 10.1016/j.jmb.2004.12.031
-
[7]
(7) Eckler, S. A.; Kuehn, R.; Gautam, M. Neuroscience 2005, 131 (3), 661. doi: 10.1016/j.neuroscience.2004.11.035
-
[8]
(8) Daniel, R.; Schuck, N. W.; Niv, Y. Proceedings of the National Academy of Sciences of the United States of America 2015, 112 (10), 2929. doi: 10.1073/pnas.1500975112
-
[9]
(9) Bentley, J. L. Commun. ACM 1980, 23 (4), 214. doi: 10.1145/358841.358850
-
[10]
(10) Brogden, K. A. Nature Reviews Microbiology 2005, 3 (3), 238. doi: 10.1038/nrmicro1098
-
[11]
(11) Holt, A.; Killian, J. A. European Biophysics Journal with Biophysics Letters 2010, 39 (4), 609. doi: 10.1007/s00249-009-0567-1
-
[12]
(12) Frankel, A. D.; Pabo, C. O. Cell 1988, 55 (6), 1189. doi: 10.1016/0092-8674(88)90263-2
-
[13]
(13) Marsden, H. R.; Tomatsu, I.; Kros, A. Chemical Society Reviews 2011, 40 (3), 1572. doi: 10.1039/C0CS00115E
-
[14]
(14) Liang, X. Y.; Li, L.; Qiu, F.; Yang, Y. L. Physica A-Statistical Mechanics and Its Applications 2010, 389 (19), 39651.
-
[15]
(15) Yang, K.; Ma, Y. Q. Journal of Physical Chemistry B 2009, 113 (4), 1048. doi: 10.1021/jp805551s
-
[16]
(16) Cai, C.; Wang, L.; Lin, J. Chemical Communications 2011, 47 (40), 11189. doi: 10.1039/c1cc12683k
-
[17]
(17) Deng, Y. B.; Hu, B. W.; Zhou, P. Acta Phys. -Chim. Sin. 2009, 25 (7), 1427. [邓益斌, 胡炳文, 周平. 物理化学学报, 2009, 25 (7), 1427.] doi: 10.3866/PKU.WHXB20090738
-
[18]
(18) Deng, L.; Liang, D. H. Acta Phys. -Chim. Sin. 2010, 26 (4), 862. [邓林, 梁德海. 物理化学学报, 2010, 26 (4), 862.] doi: 10.3866/PKU.WHXB20100422
-
[19]
(19) Wu, Q. Y.; Liang, Q. Langmuir 2014, 30 (4), 1116. doi: 10.1021/la4039123
-
[20]
(20) Kashiwada, A.; Hiroaki, H.; Kohda, D.; Nan , M.; Tanaka, T. Journal of the American Chemical Society 2000, 122 (2), 212. doi: 10.1021/ja993190q
-
[21]
(21) Beevers, A. J.; Dixon, A. M. Chemical Society Reviews 2010, 39 (6), 2146. doi: 10.1039/b912944h
-
[22]
(22) Shimanouchi, T.; Umakoshi, H.; Kuboi, R. Langmuir 2009, 25 (9), 4835. doi: 10.1021/la8040488
-
[23]
(23) Dimitrov, D. S.; Angelova, M. I. Journal of Electroanalytical Chemistry 1988, 253 (2), 323. doi: 10.1016/0022-0728(88)87069-4
-
[24]
(24) Estes, D. J.; Mayer, M. Colloids and Surfaces B-Biointerfaces 2005, 42 (2), 115. doi: 10.1016/j.colsurfb.2005.01.016
-
[25]
(25) Wheaten, S., A.; Lakshmanan, A.; Almeida, P., F. Biophysical Journal 2013, 105 (2), 432. doi: 10.1016/j.bpj.2013.05.055
-
[26]
(26) Sun, J.; Xia, Y.; Li, D.; Du, Q.; Liang, D. Biochim. Biophys. Acta 2014, 1838 (12), 2985. doi: 10.1016/j.bbamem.2014.08.018
-
[27]
(27) Nizet, V. Current Issues in Molecular Biology 2006, 8, 11.
-
[28]
(28) Döbereiner, H. G.; Käs, J.; Noppl, D.; Sprenger, I.; Sackmann, E. Biophysical Journal 1993, 65 (4), 1396. doi: 10.1016/S0006-3495(93)81203-7
-
[29]
(29) Käs, J.; Sackmann, E. Biophysical Journal 1991, 60 (4), 8254.
-
[30]
(30) Hristova, K.; Dempsey, C. E.; White, S. H. Biophysical Journal 2001, 80 (2), 801. doi: 10.1016/S0006-3495(01)76059-6
-
[31]
(31) Hong, B. B.; Qiu, F.; Zhang, H. D.; Yang, Y. L. J. Phys. Chem. B 2007, 111, 5837
-
[32]
(32) Su, C.; Xia, Y.; Sun, J.; Wang, N.; Zhu, L.; Chen, T.; Huang, Y.; Liang, D. Langmuir 2014, 30 (21), 6219. doi: 10.1021/la501296r
-
[1]
Metrics
- PDF Downloads(89)
- Abstract views(329)
- HTML views(2)