Citation: LIU Chun-Mei, ZHANG Guo-Ying, ZHANG Xin, XU Yan-Yan, GAO Dong-Zhao. Hydrothermal Synthesis of Ag3PO4 Polyhedrons with Oriented {110} Facets and Visible-Light-Driven Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1939-1948. doi: 10.3866/PKU.WHXB201508251
-
Ag3PO4 polyhedrons were synthesized by a facile hydrothermal route using polyethylene glycol-6000 (PEG-6000). The effects of hydrothermal temperature, reaction time, and PEG-6000 dosage on the morphologies and structures of the products were systematically investigated. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), and photoluminescence (PL) spectra. The hydrothermal temperature and the PEG dosage are key factors in the production of Ag3PO4 polyhedrons with oriented {110} facets. The Ag3PO4 polyhedrons evolve via Ostwald ripening, and exhibit superior visible-light photocatalytic degradation of Rhodamine B (RhB) relative to Ag3PO4 samples without oriented {110} facets and Ag3PO4 nanoparticles prepared by anion-exchange. The reaction rate constant of the Ag3PO4 polyhedrons was 8.3 times that of the Ag3PO4 nanoparticles. Total organic carbon (TOC) analysis and cycling experiments revealed that the polyhedrons have better mineralization efficiency and exhibit od circulation runs. Holes (h+) and hydroxyl radicals (·OH) are confirmed to be the dominant active species in the presence of radical scavengers and in N2-saturated solution. Given the redox potential of the active species and the band structure of Ag3PO4 polyhedron, the separation and migration mechanism of photogenerated electron-hole (e--h+) pairs at the photocatalytic interface was proposed.
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Mohamed, S. H.; El-Hagary, M.; Althoyaib, S. Eur. Phys. J. -Appl. Phys. 2012, 57, 20301. doi: 10.1051/epjap/2012110312
-
[3]
(3) Wang, X. X.; Xu, H. L.; Shen, W.; Ruhlmann, L.; Qin, F.; Sorgues, S.; Colbeau-Justin, C. Acta Phys. -Chim. Sin. 2013, 29, 1837. [王晓夏, 徐华龙, 沈伟, Ruhlmann L., 秦枫, Sorgues S., Colbeau-Justin C. 物理化学学报, 2013, 29, 1837.] doi: 10.3866/PKU.WHXB201307024
-
[4]
(4) Ge, M.; Tan, M. M.; Cui, G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107. [葛明, 谭勉勉, 崔广华. 物理化学学报, 2014, 30, 2107.] doi: 10.3866/PKU.WHXB 201409041
-
[5]
(5) Nakamura, K. J.; Ide, Y.; Ogawa, M. Mater. Lett. 2011, 65, 24. doi: 10.1016/j.matlet.2010.09.043
-
[6]
(6) Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K. J. Phys. Chem. C 2008, 112, 3083. doi: 10.1021/jp710283p
-
[7]
(7) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
-
[8]
(8) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y. Langmuir 2010, 26, 6618. doi: 10.1021/la903943s
-
[9]
(9) Wang, D. F.; Kako, T.; Ye, J. H. J. Am. Chem. Soc. 2008, 130, 2724. doi: 10.1021/ja710805x
-
[10]
(10) Yuhas, B. D.; Smeigh, A. L.; Douvalis, A. P.; Wasielewski, M. R.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 10353. doi: 10.1021/ja303640s
-
[11]
(11) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H. Nat. Mater. 2010, 9, 559. doi: 10.1038/NMAT2780
-
[12]
(12) Ma, X. G.; Lu, B.; Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F. J. Phys. Chem. C 2011, 115, 4680. doi: 10.1021/jp111167u
-
[13]
(13) Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Chem. Commun. 2011, 47, 7797. doi: 10.1039/c1cc12014j
-
[14]
(14) Yu, H. C.; Dong, Q. S.; Jiao, Z. B.; Wang, T.; Ma, J. T.; Lu, G. X.; Bi, Y. P. J. Mater. Chem. A 2014, 2, 1668. doi: 10.1039/c3ta14447j
-
[15]
(15) Hua, X.; Jin, Y. J.; Wang, K.; Li, N.; Liu, H. Q.; Chen, M. D.; Paul, S. S.; Zhang, Y.; Zhao, X. D.; Teng, F. Catal. Commun. 2014, 52, 49. doi.org/10.1016/j
-
[16]
(16) Bi, Y. P.; Hu, H. Y.; Ouyang, S. X.; Jiao, Z. B.; Lu, G. X.; Ye, J. H. J. Mater. Chem. 2012, 22, 14847. doi: 10.1039/c2jm32800c
-
[17]
(17) Bi, Y. P.; Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H. Phys. Chem. Chem. Phys. 2012, 14, 14486. doi: 10.1039/c2cp42822a
-
[18]
(18) Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. J. Mater. Chem. A 2013, 1, 2387. doi: 10.1039/c2ta01151d
-
[19]
(19) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 6490. doi: org/10.1021/ja2002132
-
[20]
(20) Dong, P. Y.; Wang, Y. H.; Li, H. H.; Li, H.; Ma, X. L.; Han, L. L. J. Mater. Chem. A 2013, 1, 4651. doi: 10.1039/c3ta00130j
-
[21]
(21) Wang, J.; Teng, F.; Chen, M. D.; Xu, J. J.; Song, Y. Q.; Zhou, X. L. CrystEngComm 2013, 15, 39. doi: 10.1039/c2ce26060c
-
[22]
(22) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437, 664. doi: 10.1038/nature04165
-
[23]
(23) Hu, L. M.; Lin, C. G.; Wang, L.; Yuan, S. L. Acta Phys. -Chim. Sin. 2014, 30, 2149. [胡立梅, 蔺存国, 王利, 苑世领. 物理化学学报, 2014, 30, 2149.] doi: 10.3866/PKU.WHXB201409021
-
[24]
(24) Mullin, J. W.; Yokota, M.; Mullin, J. W. J. Cryst. Growth 1997, 182, 86. doi: 10.1016/S0022-0248(97)00328-X
-
[25]
(25) Hua, X.; Jin, Y. J.; Wang, K.; Li, N.; Liu, H. Q.; Chen, M. D.; Paul, S. S.; Zhang, Y.; Zhao, X. D.; Teng, F. Catal. Commun. 2014, 52, 49. doi: 10.1016/j.catcom.2014.04.014
-
[26]
(26) Cui, G. W.; Wang, W. L.; Ma, M. Y.; Zhang, M.; Xia, X. Y.; Han, F. Y.; Shi, X. Y.; Zhao, Y. Q.; Dong, Y. B.; Tang, B. Chem. Commun. 2013, 49, 6415. doi: 10.103/c3cc42500b
-
[27]
(27) Zhang, C.; Zhu, Y. F. Chem. Mater. 2005, 17, 3537. doi: 10.1021/cm0501517
-
[28]
(28) Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hiodaka, H.; Serpone, N. J. Phys. Chem. B 1998, 102, 5845. doi: 10.1021/jp980922c
-
[29]
(29) Smith, W.; Mao, S.; Lu, G. H.; Catlett, A.; Chen, J. H.; Zhao, Y. P. Chem. Phys. Lett. 2010, 485, 171. doi: 10.1016/j.cplett.2009.12.041
-
[30]
(30) Indra, A.; Menezes, P. W.; Schwarze, M.; Driess, M. New J. Chem. 2014, 38, 1942. doi: 10.1039/c3nj01012k
-
[31]
(31) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y. Langmuir 2010, 26, 6618. doi: 10.1021/la903943s
-
[32]
(32) Ma, S. S.; Li, R.; Lv, C. P.; Xu, W.; u, X. L. J. Hazard. Mater. 2011, 192, 730. doi: 10.1016/j.jhazmat.2011.05.082
-
[33]
(33) Ye, L. Q.; Chen, J. N.; Tian, L. H.; Liu, J. Y.; Peng, T. Y.; Deng, K. J.; Zan, L. Appl. Catal. B 2013, 130-131, 1. doi: 10.1016/j.apcatb.2012.10.011
-
[34]
(34) Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F.; Fu, X. L. Mater. Res. Bull. 2013, 48, 106. doi: 10.1016/j.materresbull.2012.10.015
-
[1]
-
-
[1]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[4]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[5]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[6]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[9]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[10]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[11]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[14]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[15]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[18]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[19]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(110)
- Abstract views(454)
- HTML views(5)