Citation: FAN Zhi-Hui, CHEN Fei-Wu. Computation of Electron Affinities with the Second Order Multireference Perturbation Theory[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2064-2076. doi: 10.3866/PKU.WHXB201508201 shu

Computation of Electron Affinities with the Second Order Multireference Perturbation Theory

  • Corresponding author: CHEN Fei-Wu, 
  • Received Date: 1 June 2015
    Available Online: 12 August 2015

    Fund Project: 国家自然科学基金(21173020, 21473008)资助项目 (21173020, 21473008)

  • Electron affinities of F, Cl, OH, SH, CN, CH2, and NH2 have been computed with the second order multireference perturbation theory. The effects of basis set and size of the complete active space on accuracy of electron affinity have also been investigated. The results are compared with calculations performed with CASSCF, CASPT2, CCSD, CCSD(T), B3LYP, X3LYP, M06, HCTH, TPSS, B97D3, mPW2PLYP, and B2PLYP. The overall performance of the second order multireference perturbation theory is best at the level of basis sets used in this study.
  • 加载中
    1. [1]

      (1) Chen, F. W. Computaional Method in Quantum Chemistry; Science Press: Beijing, 2008; pp 70-72. [陈飞武. 量子化学中的计算方法. 北京: 科学出版社, 2008: 70-72.]

    2. [2]

      (2) Feng, X. J.; Li, Q. S. Acta Phys. -Chim. Sin. 2004, 20, 1172. [封学军, 李前树. 物理化学学报, 2004, 20, 1172.] doi: 10.3866/PKU.WHXB20040923

    3. [3]

      (3) Huang, J. G.; Shi, T. Q.; Luo, Q. Y. Acta Chim. Sin. 2004, 62, 236. [黄俭根, 施踏青, 罗秋艳. 化学学报, 2004, 62, 236.]

    4. [4]

      (4) Li, H. X.; Tang, H. A.; Yang, S.; Xiao, T. Acta Phys. -Chim. Sin. 2007, 23, 1781. [李会学, 唐惠安, 杨声, 萧泰. 物理化学学报, 2007, 23, 1781.] doi: 10.3866/PKU.WHXB20071124

    5. [5]

      (5) Ding, X. L.; Wu, J. M.; Xu, X. Chem. J. Chin. Univ. 2008, 29, 396. [丁秀丽, 吴剑鸣, 徐昕. 高等学校化学学报, 2008, 29, 396.]

    6. [6]

      (6) Peach, M. J. G.; Proft, F. D.; Tozer, D. J. J. Phys. Chem. Lett. 2010, 1, 2826. doi: 10.1021/jz101052q

    7. [7]

      (7) Li, W. W.; Hou, R. B.; Sun, Y. L. Acta Phys. -Chim. Sin. 2010, 26, 2772. [李伟伟, 侯若冰, 孙彦丽. 物理化学学报, 2010, 26, 2772.] doi: 10.3866/PKU.WHXB20101004

    8. [8]

      (8) Borgoo, A.; Tozer, D. J. J. Phys. Chem. A 2012, 116, 5497. doi: 10.1021/jp302801q

    9. [9]

      (9) Wei, M. J.; Jia, D. Q.; Chen, F. W. Acta Phys. -Chim. Sin. 2013, 29, 1441. [韦美菊, 贾德强, 陈飞武. 物理化学学报, 2013, 29, 1441.] doi: 10.3866/PKU.WHXB201304221

    10. [10]

      (10) Fu, R.; Lu, T.; Chen, F. W. Acta Phys. -Chim. Sin. 2014, 30, 628. [付蓉, 卢天, 陈飞武. 物理化学学报, 2014, 30, 628.] doi: 10.3866/PKU.WHXB201401211

    11. [11]

      (11) Cave, R. J.; Davidson, E. R. J. Chem. Phys. 1988, 88, 5770. doi: 10.1063/1.454535

    12. [12]

      (12) Andersson, K.; Malmqvist, P. A.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218. doi: 10.1063/1.462209

    13. [13]

      (13) Hirao, K. Chem. Phys. Lett. 1992, 190, 374. doi: 10.1016/0009-2614(92)85354-D

    14. [14]

      (14) Hirao, K. Chem. Phys. Lett. 1992, 196, 397. doi: 10.1016/0009-2614(92)85710-R

    15. [15]

      (15) Kozlowski, P. W.; Davidson, E. R. J. Chem. Phys. 1994, 100, 3672. doi: 10.1063/1.466355

    16. [16]

      (16) Kozlowski, P. W.; Davidson, E. R. Chem. Phys. Lett. 1994, 226, 440. doi: 10.1016/0009-2614(94)00763-2

    17. [17]

      (17) Hoffmann, M. R. J. Phys. Chem. 1996, 100, 6125. doi: 10.1021/jp952753r

    18. [18]

      (18) Mahapatra, U. S.; Datta, B.; Mukherjee, D. J. Phys. Chem . A 1999, 103, 1822. doi: 10.1021/jp9832995

    19. [19]

      (19) Khait, Y. G.; Song, J.; Hoffmann, M. R. J. Chem. Phys. 2002, 117, 4133. doi: 10.1063/1.1497642

    20. [20]

      (20) Wang, Y. B.; Gang, Z. T.; Su, K. H.; Wen, Z. Y. Scientia Sinica Chimica 2000, 30, 543. [王育彬, 甘正汀, 苏克和, 文振翼. 中国科学: 化学, 2000, 30, 543.]

    21. [21]

      (21) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J. P. J. Chem. Phys. 2001, 114, 10252. doi: 10.1063/1.1361246

    22. [22]

      (22) Angeli, C.; Bories, B.; Cavallini, A.; Cimiraglia, R. J. Chem. Phys. 2006, 124, 054108. doi: 10.1063/1.2148946

    23. [23]

      (23) Chen, F.; Davidson, E. R.; Iwata, S. Int. J. Quantum Chem. 2002, 86, 256. doi: 10.1002/qua.1105

    24. [24]

      (24) Rolik, Z.; Szabados, Á .; Surjá n, P. R. J. Chem. Phys. 2003, 119, 1922. doi: 10.1063/1.1584424

    25. [25]

      (25) Szabados, A.; Rolik, Z.; Tó th, G.; Surjá n, P. R. J. Chem. Phys. 2005, 122, 114104. doi: 10.1063/1.1862235

    26. [26]

      (26) Chen, F. Sci. China-Chem. 2007, 50, 483. doi: 10.1007/s11426-007-0074-0

    27. [27]

      (27) Chen, F. W. Acta Phys. -Chim. Sin. 2007, 23, 1360. [陈飞武. 物理化学学报, 2007, 23, 1360.] doi: 10.1016/S1872-1508(07)60072-2

    28. [28]

      (28) Fink, R. F. Chem. Phys. 2009, 356, 39. doi: 10.1016/j.chemphys. 2008.10.004

    29. [29]

      (29) Chen, Z.; Song, J.; Shaik, S.; Hiberty, P. C.; Wu, W. J. Phys. Chem. A 2009, 113, 11560.

    30. [30]

      (30) Chen, F. J. Chem. Theory Comput. 2009, 5, 931. doi: 10.1021/ct800546g

    31. [31]

      (31) Chen, F.; Wei, M.; Liu, W. Sci. China-Chem. 2011, 54, 446. doi: 10.1007/s11426-010-4199-1

    32. [32]

      (32) Kobayashi, M.; Szabados, Á .; Nakai, H.; Surjá n, P. R. J. Chem. Theory Comput. 2010, 6, 2024. doi: 10.1021/ct1001939

    33. [33]

      (33) Mao, S.; Cheng, L.; Liu, W.; Mukherjee, D. J. Chem. Phys. 2012, 136, 024105. doi: 10.1063/1.3672083

    34. [34]

      (34) Mao, S.; Cheng, L.; Liu, W.; Mukherjee, D. J. Chem. Phys. 2012, 136, 024106. doi: 10.1063/1.3672085

    35. [35]

      (35) Chen, Z.; Hoffmann, M. R. J. Chem. Phys. 2012, 137, 014108. doi: 10.1063/1.4731634

    36. [36]

      (36) Lei, Y.; Wang, Y.; Han, H.; Song, Q.; Suo, B.; Wen, Z. J. Chem. Phys. 2012, 137, 144102. doi: 10.1063/1.4757264

    37. [37]

      (37) Xu, E.; Li, S. J. Chem. Phys. 2013, 139, 174111. doi: 10.1063/1.4828739

    38. [38]

      (38) Chen, F.; Fan, Z. J. Comput. Chem. 2014, 135, 121.

    39. [39]

      (39) Liu, W.; Hoffmann, M. R. Theor. Chem. Acc. 2014, 133, 1481. doi: 10.1007/s00214-014-1481-x

    40. [40]

      (40) Chen, Z.; Chen, X.; Ying, F.; Gu, J.; Zhang, H.; Wu, W. J. Chem. Phys. 2014, 141, 134118. doi: 10.1063/1.4896534

    41. [41]

      (41) Roos, B.; Taylor, P.; Siebahn, P. Chem. Phys. 1980, 48, 157. doi: 10.1016/0301-0104(80)80045-0

    42. [42]

      (42) Cizek, J. Adv. Chem. Phys. 1969, 14, 35.

    43. [43]

      (43) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164

    44. [44]

      (44) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F., III. J. Chem. Phys. 1988, 89, 7382. doi: 10.1063/1.455269

    45. [45]

      (45) Scuseria, G. E.; Schaefer, H. F., III. J. Chem. Phys. 1989, 90, 3700. doi: 10.1063/1.455827

    46. [46]

      (46) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968. doi: 10.1063/1.453520

    47. [47]

      (47) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

    48. [48]

      (48) Beck, A. D. J. Chem. Phys. 1993, 98, 5648.

    49. [49]

      (49) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    50. [50]

      (50) Xu, X.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2673. doi: 10.1073/pnas.0308730100

    51. [51]

      (51) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

    52. [52]

      (52) Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264. doi: 10.1063/1.477267

    53. [53]

      (53) Tao, J.; Perdew, J.; Staroverov, V.; Scuseria, G. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401

    54. [54]

      (54) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495

    55. [55]

      (55) Grimme, S. J. Chem. Phys. 2006, 124, 034108. doi: 10.1063/1.2148954

    56. [56]

      (56) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2006, 8, 4398. doi: 10.1039/b608478h

    57. [57]

      (57) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153

    58. [58]

      (58) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303

    59. [59]

      (59) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Natsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.

    60. [60]

      (60) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09W, Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2009.

    61. [61]

      (61) Werner, H. J.; Knowles, P. J.; Lindh, R.; MAnby, F. R.; Schü tz, M. et al. Molpro, 2009.1 , a Package of ab initio Programs; See http://www.molpro.net.

    62. [62]

      (62) Adamowicz, L.; Bartlett, R. J. Chem. Phys. 1986, 84, 6837. doi: 10.1063/1.450688

    63. [63]

      (63) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622. doi: 10.1063/1.456415

    64. [64]

      (64) Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R. Phys. Rev. A 1989, 40, 3698. doi: 10.1103/PhysRevA.40.3698

    65. [65]

      (65) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/ 1.460205

    66. [66]

      (66) Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1992, 197, 499. doi: 10.1016/0009-2614(92)85807-M

    67. [67]

      (67) Yeager, D. L.; Nichols, J. A.; Golab, J. T. J. Chem. Phys. 1992, 97, 8441. doi: 10.1063/1.463414

    68. [68]

      (68) Ortiz, J. V. Chem. Phys. Lett. 1998, 296, 494. doi: 10.1016/S0009-2614(98)01067-7

    69. [69]

      (69) Jana, D.; Datta, D.; Mukherjee, D. Chem. Phys. 2006, 329, 290. doi: 10.1016/j.chemphys.2006.08.025

    70. [70]

      (70) Yoshida, T.; Mizushima, Y.; Iguchi, K. J. Chem. Phys. 1988, 89, 5815. doi: 10.1063/1.455557

    71. [71]

      (71) Hotop, H.; Lineberger, W. C. J. Phys. Chem. Ref. Data 1975, 4, 539. doi: 10.1063/1.555524

    72. [72]

      (72) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.

    73. [73]

      (73) Schulz, P. A.; Mead, R. D.; Jones, P. L.; Linebergert W. C. J. Chem. Phys. 1982, 77, 1153. doi: 10.1063/1.443980

    74. [74]

      (74) Proft, F. D.; Geerlings, P. J. Chem. Phys. 1997, 106, 3270. doi: 10.1063/1.473796

    75. [75]

      (75) Frenking, G.; Koch, W. J. Chem. Phys. 1986, 84, 3224. doi: 10.1063/1.450832

    76. [76]

      (76) Steiner, B. J. Chem. Phys. 1968, 49, 5097. doi: 10.1063/1.1670004

    77. [77]

      (77) Berkowitz, J.; Chupka W. A.; Walter, T. A. J. Chem. Phys. 1969, 50, 1497. doi: 10.1063/1.1671233

    78. [78]

      (78) Noro, T.; Yoshimine, M. J. Chem. Phys. 1989, 91, 3012. doi: 10.1063/1.456922

    79. [79]

      (79) Leopold, D. G.; Murray, K. K.; Stevens-Miller, A. E.; Lineberge, W. C. J. Chem. Phys. 1985, 83, 4849. doi: 10.1063/1.449746

    80. [80]

      (80) Feller, D.; McMurchie, L. E.; Borden, W. T.; Davidson, E. R. J. Chem. Phys. 1982, 77, 6134. doi: 10.1063/1.443858

    81. [81]

      (81) Wickham-Jones, C. T.; Ervin, K. M.; Ellison, G. B.; Lineberge, W. C. J. Chem. Phys. 1989, 91, 2762. doi: 10.1063/1.456994

    82. [82]

      (82) Merchan, M.; Roos, B. O. Chem. Phys. Lett. 1991, 184, 346. doi: 10.1016/0009-2614(91)85135-J

  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    5. [5]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    6. [6]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(65)
  • Abstract views(1857)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return