Citation: DING Guo-Hui, XIE Wei, JUNG In-Ho, QIAO Zhi-Yu, DU Guang-Wei, CAO Zhan-Min. Thermodynamic Assessment of the M -P2O5 and CaO-P2O5 Systems[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1853-1863. doi: 10.3866/PKU.WHXB201508121 shu

Thermodynamic Assessment of the M -P2O5 and CaO-P2O5 Systems

  • Received Date: 30 April 2015
    Available Online: 12 August 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2014CB643401)资助 (973) (2014CB643401)

  • The M -P2O5 and CaO-P2O5 systems have been thermodynamically assessed based on the available phase diagram and thermodynamic data using the Calculation of Phase Diagram (CALPHAD) method. The liquid phase is described by the modified quasichemical model with the pair approximation, which takes short-range ordering in liquid solution into account. The PO43- is considered as the basic building unit of P2O5 in the liquid solution since the maximum short-range ordering occurs at the M3(PO4)2 (M = Mg, Ca) composition. All intermetallic phases are treated as stoichiometric compounds and the phase transformations are considered. A set of self-consistent model parameters is obtained to describe the thermodynamic property of every phase in these two binary systems, by which the published phase diagram, enthalpy, entropy, and activity data are reproduced well within experimental error limits. The present study can be used as a basis for the development of a thermodynamic database of molten slag system for the steelmaking dephosphorus process.

  • 加载中
    1. [1]

      (1) Turkdogan, E. T. Fundamentals of Steelmaking; Institute of Materials: London, 1996.

    2. [2]

      (2) Bandyopadhyay, A.; Bernard, S.; Xue, W.; Bose, S. J. Am. Ceram. Soc. 2006, 89 (9), 2675. doi: 10.1111/j.1551-2916.2006.01207.x

    3. [3]

      (3) Carrodeguas, R. G.; Aza, A. H.; Turrillas, X.; Pena, P.; Aza, S. J. Am. Ceram. Soc. 2008, 91 (4), 1281. doi: 10.1111/j.1551-2916. 2008.02294.x

    4. [4]

      (4) Serena, S.; Carbajal, L.; Sainz, M. A.; Caballero, A. J. Am. Ceram. Soc. 2011, 94 (9), 3094. doi: 10.1111/jace.2011.94.issue-9

    5. [5]

      (5) Hudon, P.; Jung, I. H. Metall. Mater. Trans. B 2015, 46 (1), 494. doi: 10.1007/s11663-014-0193-x

    6. [6]

      (6) Welch, J. H.; Gutt, W. J. Chem. Soc. 1961, 4442.

    7. [7]

      (7) Szuszkiewicz, W. Mater. Chem. Phys. 1992, 31 (3), 257. doi: 10.1016/0254-0584(92)90262-7

    8. [8]

      (8) Henning, P. A.; Landa-Canovas, A. R.; Larsson, A. K.; Lidin, S. Acta Cryst. B 1999, 55 (2), 170. doi: 10.1107/S0108768198012798

    9. [9]

      (9) Trombe, J. C.; Montel, G. J. Inorg. Nucl. Chem. 1978, 40 (1), 15. doi: 10.1016/0022-1902(78)80298-X

    10. [10]

      (10) Schwerdtfeger, K.; Engell, H. J. Arch. Eisenhuettenwes. 1963, 34 (9), 647.

    11. [11]

      (11) Nagai, T.; Tanaka, Y.; Maeda, M. Metall. Mater. Trans. B 2011, 42 (4), 685. doi: 10.1007/s11663-011-9509-2

    12. [12]

      (12) Nagai, T.; Miyake, M.; Maeda, M. Metall. Mater. Trans. B 2009, 40 (4), 544. doi: 10.1007/s11663-009-9242-2

    13. [13]

      (13) Pelton, A. D.; Degterov, S. A.; Eriksson, G.; Robelin, C.; Dessureault, Y. Metall. Mater. Trans. B 2000, 31 (4), 651. doi: 10.1007/s11663-000-0103-2

    14. [14]

      (14) Pelton, A. D.; Chartrand, P. Metall. Mater. Trans. A 2001, 32 (6), 1355. doi: 10.1007/s11661-001-0226-3

    15. [15]

      (15) Rahman, M.; Hudon, P.; Jung, I. H. Metall. Mater. Trans. B 2013, 44 (4), 837. doi: 10.1007/s11663-013-9847-3

    16. [16]

      (16) Bale, C. W.; Belisle, E.; Chartrand, P.; Decterov, S. A.; Eriksson, G.; Hack, K.; Jung, I. H.; Kang, Y. B.; Melançon, J.; Pelton, A. D.; Robelin, C.; Petersen, S. Calphad2009, 33 (2), 295. doi: 10.1016/j.calphad.2008.09.009

    17. [17]

      (17) Berthet, G.; Joubert, J. C.; Bertaut, E. F. Z. Kristallogr. 1972, 136 (1-2), 98. doi: 10.1524/zkri.1972.136.1-2.98

    18. [18]

      (18) Nord, A. G.; Kierkegaard, P. Acta Chem. Scand. 1968, 22 (5), 1466.

    19. [19]

      (19) Baykal, A.; Kizilyalli, M.; Kniep, R. Turkish J. Chem. 1997, 21 (4), 394.

    20. [20]

      (20) Abdelkader, S. B.; Cherifa, A. B.; Khattech, I.; Jemal, M. Thermochim. Acta 1999, 344 (1-2), 123.

    21. [21]

      (21) Nord, A. G.; Stefanidis, T. Mater. Res. Bull. 1980, 15 (8), 1183. doi: 10.1016/0025-5408(80)90084-7

    22. [22]

      (22) Jaulmes, S.; Elfaki, A.; Quarton, M.; Burnet, F.; Chopin, C. J. Solid State Chem. 1997, 129 (2), 341. doi: 10.1006/jssc. 1996.7262

    23. [23]

      (23) Calvo, C.; Leung, J. S.; Datars, W. R. J. Chem. Phys. 1967, 46 (2), 796. doi: 10.1063/1.1840742

    24. [24]

      (24) Lukaszewicz, K. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1967, 15 (2), 53.

    25. [25]

      (25) Calvo, C. Acta Crystallogr. 1967, 23 (2), 289. doi: 10.1107/S0365110X67002610

    26. [26]

      (26) Beucher, M.; Grenier, J. C. Mater. Res. Bull. 1968, 3 (8), 643. doi: 10.1016/0025-5408(68)90113-X

    27. [27]

      (27) Nord, A. G.; Lindberg, K. B. Acta Chem. Scand. 1975, 29A (1), 1.

    28. [28]

      (28) Stachel, D.; Paulus, H.; Guenter, C.; Fuess, H. Z. Kristallogr. 1992, 199 (3-4), 275. doi: 10.1524/zkri.1992.199.3-4.275

    29. [29]

      (29) Meyer, K.; Hobert, H.; Barz, A.; Stachel, D. Vib. Spectrosc. 1994, 6 (3), 323. doi: 10.1016/0924-2031(93)E0055-7

    30. [30]

      (30) Yakubovich, O. V.; Dimitrova, O. V.; Vidrevich, A. I. Kristallografiya 1993, 38 (2), 77.

    31. [31]

      (31) Berak, J. Rocz. Chem. 1958, 32, 17.

    32. [32]

      (32) Bobrownicki, W.; Slawski, K. Rocz. Chem. 1959, 33, 251.

    33. [33]

      (33) Czupinska, G. J. Therm. Anal. 1992, 38 (10), 2343. doi: 10.1007/BF02123987

    34. [34]

      (34) Oetting, F. L.; McDonald, R. A. J. Phys. Chem. 1963, 67 (12), 2737. doi: 10.1021/j100806a055

    35. [35]

      (35) Bookey, J. B. J. Iron Steel Inst. 1952, 172, 66.

    36. [36]

      (36) Stevens, C. G.; Turkdogan, E. T. Trans. Faraday Soc. 1954, 50, 370. doi: 10.1039/tf9545000370

    37. [37]

      (37) Ando, J. Bull. Chem. Soc. Jpn. 1958, 31, 201. doi: 10.1246/bcsj. 31.201

    38. [38]

      (38) Roy, R.; Middleswarth, E. T.; Hummel, F. A. Am. Mineral. 1948, 33, 458.

    39. [39]

      (39) Thilo, E.; Grunze, I. Z. Anorg. Allg. Chem. 1957, 290, 209.

    40. [40]

      (40) Andrieu, R.; Diament, R. Compt. Rend. 1964, 259 (25), 4708.

    41. [41]

      (41) Rakotomahanina-Rolaisoa, E.; Henry, Y.; Durif, A.; Raholison, C. Bull. Soc. Fr. Mineral. Cristallogr. 1970, 93 (1), 43.

    42. [42]

      (42) Czupinska, G. Thermochim. Acta 1992, 202, 77. doi: 10.1016/0040-6031(92)85152-L

    43. [43]

      (43) Sarver, J. F.; Hummel, F. A. J. Electrochem. Soc. 1959, 106, 500. doi: 10.1149/1.2427396

    44. [44]

      (44) Jung, I. H.; Hudon, P. J. Am. Ceram. Soc. 2012, 95 (11), 3665. doi: 10.1111/jace.2012.95.issue-11

    45. [45]

      (45) Berthelot, M. Thermochimie: Donnees et Lois Numériques; Gauthier-Villars: Paris, 1897.

    46. [46]

      (46) Lopatin, S. I.; Semenov, G. A. Izv. Akad. Nauk SSSR, Neorg. Mater. 1989, 25 (4), 645.

    47. [47]

      (47) Lopatin, S. I.; Semenov, G. A.; Kutuzova, Y. L. A. Izv. Akad. Nauk SSSR, Neorg. Mater. 1986, 22 (9), 1506.

    48. [48]

      (48) Iwase, M.; Akizuki, H.; Fujiwara, H.; Ichise, E.; Yamada, N. Steel Res. 1987, 58 (5), 215.

    49. [49]

      (49) Turkdogan, E. T.; Pearson, J. J. Iron Steel Inst. 1953, 175, 398.

    50. [50]

      (50) Pelton, A. D.; Blander, M. Metall. Trans. B 1986, 17 (4), 805. doi: 10.1007/BF02657144

    51. [51]

      (51) Tromel, G. Mitt. Kaiser-Wilhelm-Inst. Eisenforsch Dusseldorf 1932, 14 (3), 25.

    52. [52]

      (52) Hill, W. L.; Faust, G. T.; Reynolds, D. S. Am. J. Sci. 1944, 242, 457. doi: 10.2475/ajs.242.9.457

    53. [53]

      (53) Tromel, G.; Fix, W. Arch. Eisenhuettenwes 1961, 32, 209.

    54. [54]

      (54) Berak, J.; Znamierowska, T. Pr. Nauk. Wyzsz. Szk. Ekon. Wroclaw. 1970, 23, 233.

    55. [55]

      (55) Maciejewski, M.; Brunner, T. J.; Loher, S. F.; Stark, W. J.; Baiker, A. Thermochim. Acta 2008, 468 (1-2), 75. doi: 10.1016/j.tca.2007.11.022

    56. [56]

      (56) Tromel, G.; Fix, W. Arch. Eisenhuettenwes 1962, 33, 745.

    57. [57]

      (57) Parodi, J. A.; Hickok, R. L.; Segelken, W. G.; Cooper, J. R. J. Electrochem. Soc. 1965, 112 (7), 688. doi: 10.1149/1.2423665


  • 加载中
    1. [1]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    10. [10]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    11. [11]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    12. [12]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    13. [13]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    14. [14]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    15. [15]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    16. [16]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(201)
  • Abstract views(529)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return