Citation: MA Hui-Ling, ZHANG Long, ZHANG You-Wei, LIU Di, SUN Chao, ZENG Xin-Miao, ZHAI Mao-Lin. γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 2016-2022. doi: 10.3866/PKU.WHXB201508102
-
Graphene, a one-atom-thick, two-dimensional (2D) sheet of carbon packed in a honeycomb lattice, has striking electronic, mechanical, and thermal properties. Reduced graphene oxide (R ) and amine-modified reduced graphene oxide (R N) were obtained by γ-ray induced reduction of a graphene oxide ( ) suspension in purified water and in a p-phenylene diamine (PPD) aqueous solution, respectively. The structures and elemental compositions of , R , and R N were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, the electrical conductivities and hydrophilic properties were conducted with four-probe resistivity meter and contact angle measurements, respectively. The results reveal that can be well reduced by γ-ray irradiation in either purified water or PPD aqueous solution. Furthermore, the electrical conductivities of obtained R and R N are enhanced. The hydrophilicity of R N is higher than that of R because the amine groups of PPD are modified on the surface of graphene nanosheets during the γ-ray induced reduction. However, the conduction of electron on the surface of graphene can be inhibited by the modified amine groups. Therefore, the electrical conductivity of R is higher than that of R N.
-
-
[1]
(1) Yin, P. T.; Shah, S.; Chhowalla, M.; Lee, K. B. Chemical Reviews 2015, 115 (7), 2483. doi: 10.1021/cr500537t
-
[2]
(2) Zhang, Q. Q.; Li, R.; Zhang, M. M.; u, X. L. Acta Phys. -Chim. Sin. 2014, 30, 476. [张晴晴, 李容, 张萌萌, 苟兴龙. 物理化学学报, 2014, 30, 476.] doi: 10.3866/PKU.WHXB201401071
-
[3]
(3) Yang, Y. W.; Feng, G.; Lu, Z. H.; Hu, N.; Zhang, F.; Chen, X. S. Acta Phys. -Chim. Sin. 2014, 30, 1180. [杨宇雯, 冯刚, 卢章辉, 胡娜, 张飞, 陈祥树. 物理化学学报, 2014, 30, 1180.] doi: 10.3866/PKU.WHXB201404141
-
[4]
(4) Xu, J.; Yang, D. Z.; Liao, X. Z.; He, Y. S.; Ma, Z. F. Acta Phys. -Chim. Sin. 2015, 31, 913. [许婧, 杨德志, 廖小珍, 何雨石, 马紫峰. 物理化学学报, 2015, 31, 913.] doi: 10.3866/PKU.WHXB201503162
-
[5]
(5) Mi, C. T.; Liu, G. P.; Wang, J. J.; Guo, X. L.; Wu, S. X.; Yu, J. Acta Phys. -Chim. Sin. 2014, 30, 1230. [米传同, 刘国平, 王家佳, 郭新立, 吴三械, 于金. 物理化学学报,2014, 30, 1230.] doi: 10.3866/PKU.WHXB201405201
-
[6]
(6) Wu, H.; Drzal, L. T. Carbon 2012, 50 (3), 1135. doi: 10.1016/j.carbon.2011.10.026
-
[7]
(7) Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chemical Reviews 2015, 115 (11), 4744. doi: 10.1021/cr500304f
-
[8]
(8) Wang, C. F.; Chen, Y. J.; Zhuo, K. L.; Wang, J. J. Chemical Communications 2013, 49 (32), 3336. doi: 10.1039/c3cc40507a
-
[9]
(9) Yuan, F. Y.; Zhang, H. B.; Li, X. F.; Ma, H. L.; Li, X. Z.; Yu, Z. Z. Carbon 2014, 68, 653. doi: 10.1016/j.carbon.2013.11.046
-
[10]
(10) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi:10.1016/j.carbon.2007.02.034
-
[11]
(11) Si, Y.; Samulski, E. T. Nano Letters 2008, 8 (6), 1679. doi: 10.1021/nl080604h
-
[12]
(12) Wang, G.; Yang, J.; Park, J.; u, X.; Wang, B.; Liu, H.; Yao, J. Journal of Physical Chemistry C 2008, 112 (22), 8192. doi: 10.1021/jp710931h
-
[13]
(13) Tang, X. Z.; Cao, Z. W.; Zhang, H. B.; Liu, J.; Yu, Z. Z. Chemical Communications 2011, 47 (11), 3084. doi: 10.1039/c0cc05613h
-
[14]
(14) Nguyen, S. T.; Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Ruoff, R. S. Nature 2006, 442 (7100), 282. doi:10.1038/nature04969
-
[15]
(15) Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Advanced Materials 2008, 20 (23), 4490. doi: 10.1002/adma.v20:23
-
[16]
(16) Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Chemical Communications 2010, 46 (7), 1112. doi: 10.1039/B917705A
-
[17]
(17) Zhou, D.; Cheng, Q. Y.; Han, B. H. Carbon 2011, 49 (12), 3920. doi: 10.1016/j.carbon.2011.05.030
-
[18]
(18) Bashar, M. M.; Siddiquee, M. A.; Khan, M. A. Carbohydrate Polymers 2015, 120, 92. doi: 10.1016/j.carbpol.2014.11.023
-
[19]
(19) Chen, L.; Xu, Z. W.; Li, J. L.; Li, Y. L.; Shan, M. J.; Wang, C. H.; Wang, Z.; Guo, Q. W.; Liu, L. S.; Chen, G. W.; Qian, X. M. Journal of Materials Chemistry 2012, 22(27), 13460. doi: 10.1039/c2jm31208e
-
[20]
(20) Zhang, B. W.; Zhang, Y. J.; Peng, C.; Yu, M.; Li, L. F.; Deng, B.; Hu, P. F.; Fan, C. H.; Li, J. Y.; Huang, Q. Nanoscale 2012, 4 (5), 1742. doi: 10.1039/c2nr11724j
-
[21]
(21) Zhang, Y. W.; Ma, H. L.; Zhang, Q. L.; Peng, J.; Li, J. Q.; Zhai, M. L.; Yu, Z. Z. Journal of Materials Chemistry 2012, 22 (26), 13064. doi: 10.1039/c2jm32231e
-
[22]
(22) Liu, J.; Jin, J. M. Ieee Transactions on Antennas and Propagation 2003, 51 (6), 1157. doi: 10.1109/TAP.2003.812280
-
[23]
(23) Chen, C. M.; Zhang, Q.; Yang, M. G.; Huang, C. H.; Yang, Y. G.; Wang, M. Z. Carbon 2012, 50 (10), 3572. doi: 10.1016/j.carbon.2012.03.029
-
[24]
(24) Chen, C. M.; Zhang, Q.; Zhao, X. C.; Zhang, B. S.; Kong, Q. Q.; Yang, M. G.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G.; Schlogl, R.; Su, D. S. Journal of Materials Chemistry2012, 22 (28), 14076. doi: 10.1039/c2jm31426f
-
[25]
(25) Chen, X. Q.; Xu, Z. H.; Li, X. D.; Shaibat, M. A.; Ishii, Y.; Ruoff, R. S. Carbon 2007, 45 (2), 416. doi: 10.1016/j.carbon.2006.08.025
-
[26]
(26) Ma, H. L.; Zhang, H. B.; Hu, Q. H.; Li, W. J.; Jiang, Z. G.; Yu, Z. Z.; Dasari, A. ACS Applied Materials & Interfaces 2012, 4 (4), 1948. doi: 10.1021/am201654b
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[5]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[6]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[7]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[8]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[9]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[10]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[11]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[12]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[15]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[16]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[19]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[20]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[1]
Metrics
- PDF Downloads(133)
- Abstract views(365)
- HTML views(5)