Citation: FAN Feng-Qi, MENG Ming, TIAN Ye, ZHENG Li-Rong, ZHANG Jing, HU Tian-Dou. Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1761-1770. doi: 10.3866/PKU.WHXB201507291 shu

Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2

  • Received Date: 17 April 2015
    Available Online: 29 July 2015

    Fund Project: 国家自然科学基金(21276184, U1332102, 21476160) (21276184, U1332102, 21476160) 高等学校博士学科点专项科研基金(20120032110014) (20120032110014) 天津市自然科学基金(12JCYBJC14000, 15JCZDJC37400) (12JCYBJC14000, 15JCZDJC37400)中国大学学科人才引进计划(B06006)资助 (B06006)

  • A series of non-platinic lean NOx trap (LNT) CuO-K2CO3/TiO2 catalysts with different Cu loadings were prepared by sequential impregnation, and they showed relatively od performance for lean NOx storage and reduction. The catalyst containing 8% (w) CuO showed not only the largest NOx storage capacity of 1.559 mmol·g-1 under lean conditions, but also the highest NOx reduction percentage of 99% in cyclic lean/rich atmospheres. Additionally, zero selectivity of NOx to N2O was achieved over this catalyst during NOx reduction. Multiple techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), temperature-programmed desorption of CO2 (CO2-TPD), extended X-ray absorption fine structure (EXAFS), temperature-programmed reduction of H2 (H2-TPR), and in-situ diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS), were used for catalyst characterization. The results indicate that highly dispersed CuO is the main active phase for oxidation of NO to NO2 and reduction of NOx to N2. The strong interaction between K2CO3 and CuO was clearly revealed, which favors NOx adsorption and storage. The appearance of negative bands at around 1436 and 1563 cm-1, corresponding to CO2 asymmetric stretching in bicarbonates and -C=O stretching in bidentate carbonates, showed the involvement of carbonates in NOx storage. After using the catalysts for 15 cycles of NOx storage and reduction in alternative lean/rich atmospheres, the CuO species in the catalysts showed little change, indicating high catalytic stability. Based on the results of in-situ DRIFTS and the other characterizations, a model describing the NOx storage processes and the distribution of CuO and K2CO3 species is proposed.

  • 加载中
    1. [1]

      (1) Roy, S.; Baiker, A. Chem. Rev. 2009, 109, 4054. doi: 10.1021/cr800496f

    2. [2]

      (2) Klingstedt, F.; Arve, K.; Eränen, K.; Murzin, D. Y. Accounts Chem. Res. 2006, 39, 273. doi: 10.1021/ar050185k

    3. [3]

      (3) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi, S.; Kasahara, K. Catal. Today 1996, 27, 63.

    4. [4]

      (4) Xian, H.; Ma, A. J.; Meng, M.; Li, X. G. Acta Phys. -Chim. Sin. 2013, 29, 2437. [贤晖, 马爱静, 孟明, 李新刚. 物理化学学报, 2013, 29, 2437.] doi: 10.3866/PKU.WHXB201309052

    5. [5]

      (5) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl. Catal. B 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8

    6. [6]

      (6) Sultana, A.; Haneda, M.; Hamada, H. Appl. Catal. B 2009, 88, 180. doi: 10.1016/j.apcatb.2008.08.028

    7. [7]

      (7) Zhang, W. X.; Yahiro, H.; Mizuno, N.; Izumi, J.; Iwamoto, M. Langmuir 1993, 9, 2337. doi: 10.1021/la00033a015

    8. [8]

      (8) Liu, J.; Li, X. Y.; Zhao, Q. D.; Zhang, D. K.; Ndokoye, P. J. Mol. Catal. A 2013, 378, 115.

    9. [9]

      (9) Guerrero, S.; Guzmán, I.; Aguila, G.; Chornik, B.; Araya, P. Appl. Catal. B 2012, 123-124, 282.

    10. [10]

      (10) Glisenti, A.; Natile, M. M.; Carlotto, S.; Vittadini, A. Catal. Lett. 2014, 144, 1466.

    11. [11]

      (11) Matsumoto, S. I.; Ikeda, Y.; Suzuki, H.; Ogai, M.; Miyoshi, N. Appl. Catal. B 2000, 25, 115. doi: 10.1016/S0926-3373(99) 00124-1

    12. [12]

      (12) Frola, F.; Manzoli, M.; Prinetto, F.; Ghiotti, G.; Castoldi, L.; Lietti, L. J. Phys. Chem. C 2008, 112, 12869. doi: 10.1021/jp801480t

    13. [13]

      (13) Lietti, L.; Forzatti, P.; Nova, I.; Tronconi, E. J. Catal. 2001, 204, 175. doi: 10.1006/jcat.2001.3370

    14. [14]

      (14) Nova, I.; Castoldi, L.; Lietti, L.; Tronconi, E.; Forzatti, P.; Prinetto, F.; Ghiotti, G. J. Catal. 2004, 222, 377. doi: 10.1016/j.jcat.2003.11.013

    15. [15]

      (15) Delucasconsuegra, A.; Caravaca, A.; Sanchez, P.; Dorado, F.; Valverde, J. J. Catal. 2008, 259, 54.

    16. [16]

      (16) Shen, W. H.; Nitta, A.; Chen, Z.; Eda, T.; Yoshida, A.; Naito, S. C. J. Catal. 2011, 280, 161. doi: 10.1016/j.jcat.2011.03.014

    17. [17]

      (17) Castoldi, L.; Lietti, L.; Forzatti, P.; Morandi, S.; Ghiotti, G.; Vindigni, F. J. Catal. 2010, 276, 335. doi: 10.1016/j.jcat. 2010.09.026

    18. [18]

      (18) Liu, Y.; Meng, M.; Li, X. G.; Guo, L. H.; Zha, Y. Q. Chem. Eng. Res. Des. 2008, 86, 932. doi: 10.1016/j.cherd.2008.02.010

    19. [19]

      (19) Hou, N. N.; Zhang, Y. X.; Meng, M. J. Phys. Chem. C 2013, 117, 4089.

    20. [20]

      (20) Li, W. B.; Yang, R. T.; Krist, K.; Regalbuto, J. R. Energ. Fuel 1997, 11, 428. doi: 10.1021/ef960128v

    21. [21]

      (21) Huang, J.; Wang, S. R.; Zhao, Y. Q.; Wang, X. Y.; Wang, S. P.; Wu, S. H.; Zhang, S. M.; Huang, W. P. Catal. Commun. 2006, 7, 1029. doi: 10.1016/j.catcom.2006.05.001

    22. [22]

      (22) Chen, C. S.; Chen, T. C.; Chen, C. C.; Lai, Y. T.; You, J. H.; Chou, T. M.; Chen, C. H.; Lee, J. F. Langmuir 2012, 28, 9996.

    23. [23]

      (23) You, R.; Zhang, Y. X; Liu, D. S.; Meng, M.; Zheng, L. R.; Zhang, J.; Hu, T. D. J. Phys. Chem. C 2014, 118, 25403. doi: 10.1021/jp505601x

    24. [24]

      (24) Wang, Q.; Sohn, J. H.; Chung, J. S. Appl. Catal. B 2009, 89, 97. doi: 10.1016/j.apcatb.2008.12.007

    25. [25]

      (25) Li, Z. B.; Meng, M.; You, R.; Ding, T.; Li, Z. J. Catal. Lett. 2012, 142, 1067. doi: 10.1007/s10562-012-0864-7

    26. [26]

      (26) Zhang, L. J.; Cui, S. P.; Guo, H. X.; Ma, X. Y.; Luo, X. G. J. Mol. Catal. A 2014, 390, 14. doi: 10.1016/j.molcata.2014.02.021

    27. [27]

      (27) Zhang, Y. X.; Meng, M.; Dai, F. F.; Ding, T.; You, R. J. Phys. Chem. C 2013, 117, 23691. doi: 10.1021/jp406950u

    28. [28]

      (28) Friedman, R. M.; Freeman, J. J.; Lytle, F. W. J. Catal. 1978, 55, 10. doi: 10.1016/0021-9517(78)90181-1

    29. [29]

      (29) Liu, W.; Flytzani-Stephanopoulos, M. Chem. Eng. J. 1996, 64, 283.

    30. [30]

      (30) Bhuiyan, M. M. R.; Lin, S. D.; Hsiao, T. C. Catal. Today 2014, 226, 150. doi: 10.1016/j.cattod.2013.10.053

    31. [31]

      (31) Fox, E. B.; Velu, S.; Engelhard, M. H.; Chin, Y. H.; Miller, J. T.; Kropf, J.; Song, C. J. Catal. 2008, 260, 358. doi: 10.1016/j.jcat. 2008.08.018

    32. [32]

      (32) Zhang, Y. X.; Liu, D. S.; Meng, M.; Jiang, Z.; Zhang, S. Ind. Eng. Chem. Res. 2014, 53, 8416. doi: 10.1021/ie501034u

    33. [33]

      (33) Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal. 2008, 257, 172. doi: 10.1016/j.jcat.2008.04.021

    34. [34]

      (34) Prinetto, F.; Manzoli, M.; Morandi, S.; Frola, F.; Ghiotti, G.; Castoldi, L.; Lietti, L.; Forzatti, P. J. Phys. Chem. C 2009, 114, 1127.

    35. [35]

      (35) Toops, T. J.; Smith, D. B.; Partridge, W. P. Appl. Catal. B 2005, 58, 245. doi: 10.1016/j.apcatb.2004.10.021

    36. [36]

      (36) Prinetto, F.; Ghiotti, G.; Nova, I.; Lietti, L.; Tronconi, E.; Forzatti, P. J. Phys. Chem. B 2001, 105, 12732. doi: 10.1021/jp012702w

    37. [37]

      (37) Montanari, T.; Castoldi, L.; Lietti, L.; Busca, G. Appl. Catal. A 2011, 400, 61. doi: 10.1016/j.apcata.2011.04.016

    38. [38]

      (38) Fanson, P. T.; Horton, M. R.; Delgass, W. N.; Lauterbach, J. Appl. Catal. B 2003, 46, 393. doi: 10.1016/S0926-3373(03) 00275-3

    39. [39]

      (39) Qi, G. S.; Li, W. Catal. Lett. 2013, 144, 639.


  • 加载中
    1. [1]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    4. [4]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    5. [5]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    9. [9]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    10. [10]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(183)
  • Abstract views(593)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return