Citation:
FAN Feng-Qi, MENG Ming, TIAN Ye, ZHENG Li-Rong, ZHANG Jing, HU Tian-Dou. Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2[J]. Acta Physico-Chimica Sinica,
;2015, 31(9): 1761-1770.
doi:
10.3866/PKU.WHXB201507291
-
A series of non-platinic lean NOx trap (LNT) CuO-K2CO3/TiO2 catalysts with different Cu loadings were prepared by sequential impregnation, and they showed relatively od performance for lean NOx storage and reduction. The catalyst containing 8% (w) CuO showed not only the largest NOx storage capacity of 1.559 mmol·g-1 under lean conditions, but also the highest NOx reduction percentage of 99% in cyclic lean/rich atmospheres. Additionally, zero selectivity of NOx to N2O was achieved over this catalyst during NOx reduction. Multiple techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), temperature-programmed desorption of CO2 (CO2-TPD), extended X-ray absorption fine structure (EXAFS), temperature-programmed reduction of H2 (H2-TPR), and in-situ diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS), were used for catalyst characterization. The results indicate that highly dispersed CuO is the main active phase for oxidation of NO to NO2 and reduction of NOx to N2. The strong interaction between K2CO3 and CuO was clearly revealed, which favors NOx adsorption and storage. The appearance of negative bands at around 1436 and 1563 cm-1, corresponding to CO2 asymmetric stretching in bicarbonates and -C=O stretching in bidentate carbonates, showed the involvement of carbonates in NOx storage. After using the catalysts for 15 cycles of NOx storage and reduction in alternative lean/rich atmospheres, the CuO species in the catalysts showed little change, indicating high catalytic stability. Based on the results of in-situ DRIFTS and the other characterizations, a model describing the NOx storage processes and the distribution of CuO and K2CO3 species is proposed.
-
Keywords:
-
NOx
, - Storage,
- Reduction,
- Copper oxide,
- Potassium carbonate
-
-
-
-
[1]
(1) Roy, S.; Baiker, A. Chem. Rev. 2009, 109, 4054. doi: 10.1021/cr800496f
-
[2]
(2) Klingstedt, F.; Arve, K.; Eränen, K.; Murzin, D. Y. Accounts Chem. Res. 2006, 39, 273. doi: 10.1021/ar050185k
-
[3]
(3) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi, S.; Kasahara, K. Catal. Today 1996, 27, 63.
-
[4]
(4) Xian, H.; Ma, A. J.; Meng, M.; Li, X. G. Acta Phys. -Chim. Sin. 2013, 29, 2437. [贤晖, 马爱静, 孟明, 李新刚. 物理化学学报, 2013, 29, 2437.] doi: 10.3866/PKU.WHXB201309052
-
[5]
(5) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl. Catal. B 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8
-
[6]
(6) Sultana, A.; Haneda, M.; Hamada, H. Appl. Catal. B 2009, 88, 180. doi: 10.1016/j.apcatb.2008.08.028
-
[7]
(7) Zhang, W. X.; Yahiro, H.; Mizuno, N.; Izumi, J.; Iwamoto, M. Langmuir 1993, 9, 2337. doi: 10.1021/la00033a015
-
[8]
(8) Liu, J.; Li, X. Y.; Zhao, Q. D.; Zhang, D. K.; Ndokoye, P. J. Mol. Catal. A 2013, 378, 115.
-
[9]
(9) Guerrero, S.; Guzmán, I.; Aguila, G.; Chornik, B.; Araya, P. Appl. Catal. B 2012, 123-124, 282.
-
[10]
(10) Glisenti, A.; Natile, M. M.; Carlotto, S.; Vittadini, A. Catal. Lett. 2014, 144, 1466.
-
[11]
(11) Matsumoto, S. I.; Ikeda, Y.; Suzuki, H.; Ogai, M.; Miyoshi, N. Appl. Catal. B 2000, 25, 115. doi: 10.1016/S0926-3373(99) 00124-1
-
[12]
(12) Frola, F.; Manzoli, M.; Prinetto, F.; Ghiotti, G.; Castoldi, L.; Lietti, L. J. Phys. Chem. C 2008, 112, 12869. doi: 10.1021/jp801480t
-
[13]
(13) Lietti, L.; Forzatti, P.; Nova, I.; Tronconi, E. J. Catal. 2001, 204, 175. doi: 10.1006/jcat.2001.3370
-
[14]
(14) Nova, I.; Castoldi, L.; Lietti, L.; Tronconi, E.; Forzatti, P.; Prinetto, F.; Ghiotti, G. J. Catal. 2004, 222, 377. doi: 10.1016/j.jcat.2003.11.013
-
[15]
(15) Delucasconsuegra, A.; Caravaca, A.; Sanchez, P.; Dorado, F.; Valverde, J. J. Catal. 2008, 259, 54.
-
[16]
(16) Shen, W. H.; Nitta, A.; Chen, Z.; Eda, T.; Yoshida, A.; Naito, S. C. J. Catal. 2011, 280, 161. doi: 10.1016/j.jcat.2011.03.014
-
[17]
(17) Castoldi, L.; Lietti, L.; Forzatti, P.; Morandi, S.; Ghiotti, G.; Vindigni, F. J. Catal. 2010, 276, 335. doi: 10.1016/j.jcat. 2010.09.026
-
[18]
(18) Liu, Y.; Meng, M.; Li, X. G.; Guo, L. H.; Zha, Y. Q. Chem. Eng. Res. Des. 2008, 86, 932. doi: 10.1016/j.cherd.2008.02.010
-
[19]
(19) Hou, N. N.; Zhang, Y. X.; Meng, M. J. Phys. Chem. C 2013, 117, 4089.
-
[20]
(20) Li, W. B.; Yang, R. T.; Krist, K.; Regalbuto, J. R. Energ. Fuel 1997, 11, 428. doi: 10.1021/ef960128v
-
[21]
(21) Huang, J.; Wang, S. R.; Zhao, Y. Q.; Wang, X. Y.; Wang, S. P.; Wu, S. H.; Zhang, S. M.; Huang, W. P. Catal. Commun. 2006, 7, 1029. doi: 10.1016/j.catcom.2006.05.001
-
[22]
(22) Chen, C. S.; Chen, T. C.; Chen, C. C.; Lai, Y. T.; You, J. H.; Chou, T. M.; Chen, C. H.; Lee, J. F. Langmuir 2012, 28, 9996.
-
[23]
(23) You, R.; Zhang, Y. X; Liu, D. S.; Meng, M.; Zheng, L. R.; Zhang, J.; Hu, T. D. J. Phys. Chem. C 2014, 118, 25403. doi: 10.1021/jp505601x
-
[24]
(24) Wang, Q.; Sohn, J. H.; Chung, J. S. Appl. Catal. B 2009, 89, 97. doi: 10.1016/j.apcatb.2008.12.007
-
[25]
(25) Li, Z. B.; Meng, M.; You, R.; Ding, T.; Li, Z. J. Catal. Lett. 2012, 142, 1067. doi: 10.1007/s10562-012-0864-7
-
[26]
(26) Zhang, L. J.; Cui, S. P.; Guo, H. X.; Ma, X. Y.; Luo, X. G. J. Mol. Catal. A 2014, 390, 14. doi: 10.1016/j.molcata.2014.02.021
-
[27]
(27) Zhang, Y. X.; Meng, M.; Dai, F. F.; Ding, T.; You, R. J. Phys. Chem. C 2013, 117, 23691. doi: 10.1021/jp406950u
-
[28]
(28) Friedman, R. M.; Freeman, J. J.; Lytle, F. W. J. Catal. 1978, 55, 10. doi: 10.1016/0021-9517(78)90181-1
-
[29]
(29) Liu, W.; Flytzani-Stephanopoulos, M. Chem. Eng. J. 1996, 64, 283.
-
[30]
(30) Bhuiyan, M. M. R.; Lin, S. D.; Hsiao, T. C. Catal. Today 2014, 226, 150. doi: 10.1016/j.cattod.2013.10.053
-
[31]
(31) Fox, E. B.; Velu, S.; Engelhard, M. H.; Chin, Y. H.; Miller, J. T.; Kropf, J.; Song, C. J. Catal. 2008, 260, 358. doi: 10.1016/j.jcat. 2008.08.018
-
[32]
(32) Zhang, Y. X.; Liu, D. S.; Meng, M.; Jiang, Z.; Zhang, S. Ind. Eng. Chem. Res. 2014, 53, 8416. doi: 10.1021/ie501034u
-
[33]
(33) Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal. 2008, 257, 172. doi: 10.1016/j.jcat.2008.04.021
-
[34]
(34) Prinetto, F.; Manzoli, M.; Morandi, S.; Frola, F.; Ghiotti, G.; Castoldi, L.; Lietti, L.; Forzatti, P. J. Phys. Chem. C 2009, 114, 1127.
-
[35]
(35) Toops, T. J.; Smith, D. B.; Partridge, W. P. Appl. Catal. B 2005, 58, 245. doi: 10.1016/j.apcatb.2004.10.021
-
[36]
(36) Prinetto, F.; Ghiotti, G.; Nova, I.; Lietti, L.; Tronconi, E.; Forzatti, P. J. Phys. Chem. B 2001, 105, 12732. doi: 10.1021/jp012702w
-
[37]
(37) Montanari, T.; Castoldi, L.; Lietti, L.; Busca, G. Appl. Catal. A 2011, 400, 61. doi: 10.1016/j.apcata.2011.04.016
-
[38]
(38) Fanson, P. T.; Horton, M. R.; Delgass, W. N.; Lauterbach, J. Appl. Catal. B 2003, 46, 393. doi: 10.1016/S0926-3373(03) 00275-3
-
[39]
(39) Qi, G. S.; Li, W. Catal. Lett. 2013, 144, 639.
-
[1]
-
-
-
[1]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[2]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[5]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[6]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[7]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[8]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[9]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[10]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[11]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[12]
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
-
[13]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[14]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[15]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[16]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[17]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[18]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[19]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[20]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[1]
Metrics
- PDF Downloads(183)
- Abstract views(655)
- HTML views(37)