Citation:
ZENG Xiao-Lan, WANG Yan. Mechanism and Regioselectivity of Addition Reactions of CH3OH to Germasilenes[J]. Acta Physico-Chimica Sinica,
;2015, 31(9): 1699-1707.
doi:
10.3866/PKU.WHXB201507202
-
Density functional theory (DFT) calculations of the reaction mechanisms and potential energy surfaces for the addition reactions of CH3OH to several germasilenes were performed at the B3LYP/6-311++G(d,p) level. The effect of the polarity of the Si=Ge double bond in germasilenes on the regioselectivity of the addition reactions was also investigated. The results indicate that germasilenes can react with a monomer or dimer of CH3OH. All reactions start with formation of nucleophilic or electrophilic complexes. The dimer of CH3OH adds to H2Si=GeH2 kinetically more easily than the monomer. However, the situation is generally the opposite for substituted germasilenes. There is a kinetic disadvantage of substituting phenyl (Ph) or SiMe3 groups for H atoms in H2Si=GeH2 in the addition reactions, and the effect of the SiMe3 group is more remarkable than that of the Ph substituent. Both the polarity of the Si=Ge double bond and the strength of the Si-O (Ge-H) and Ge-O (Si-H) bonds affect the regioselectivity of the addition reactions.
-
-
-
[1]
(1) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343. doi: 10.1126/science.214.4527.1343
-
[2]
(2) Baines, K. M.; Cooke, J. A. Organometallics 1991, 10, 3419. doi: 10.1021/om00056a004
-
[3]
(3) Lee, V. Y.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2000, 122, 9034. doi: 10.1021/ja001551s
-
[4]
(4) Lee, V. Y.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2000, 122, 12604. doi: 10.1021/ja0030921
-
[5]
(5) Ichinohe, M.; Arai, Y.; Sekiguchi, A.; Takagi, N.; Nagase, S. Organometallics 2001, 20, 4141. doi: 10.1021/om010419d
-
[6]
(6) Sekiguchi, A.; Izumi, R.; Ihara, S.; Ichinohe, M.; Lee, V. Y. Angew. Chem. Int. Edit. 2002, 41, 1598. doi: 10.1002/1521-3773(20020503)41:9<1598::AID-ANIE1598>3.0.CO;2-8
-
[7]
(7) Iwamoto, T.; Masuda, H.; Kabuto, C.; Kira, M. Organometallics 2005, 24, 197. doi: 10.1021/om049183e
-
[8]
(8) Iwamoto, T.; Abe, T.; Kabuto, C.; Kira, M. Chem. Commun. 2005, 5190.
-
[9]
(9) Igarashi, M.; Ichinohe, M.; Sekiguchi, A. Heteroat. Chem. 2008, 19, 649. doi: 10.1002/hc.v19:7
-
[10]
(10) Iwamoto, T.; Okita, J.; Yoshida, N.; Kira, M. Silicon 2010, 2, 209. doi: 10.1007/s12633-011-9069-8
-
[11]
(11) Grev, R. S.; Schaefer, H. F., III; Baines, K. M. J. Am. Chem. Soc. 1990, 112, 9458. doi: 10.1021/ja00182a003
-
[12]
(12) Grev, R. S.; Schaefer, H. F., III. Organometallics 1992, 11, 3489. doi: 10.1021/om00059a002
-
[13]
(13) Apeloig, Y.; Nakash, M. Organometallics 1998, 17, 2307. doi: 10.1021/om980016m
-
[14]
(14) Takahashi, M.; Veszprémi, T.; Hajgató, B.; Kira, M. Organometallics 2001, 19, 4660. doi: 10.1021/om000385u
-
[15]
(15) Veszprémi, T.; Takahashi, M.; Hajgató, B.; Kira, M. J. Am. Chem. Soc. 2001, 123, 6629. doi: 10.1021/ja0040823
-
[16]
(16) Takahashi, M.; Veszprémi, T.; Kira, M. Organometallics 2004, 23, 5768. doi: 10.1021/om049418m
-
[17]
(17) Yamabe, S.; Mizukami, N.; Tsuchida, N.; Yamazaki, S. J. Organomet. Chem. 2008, 693, 1335. doi: 10.1016/j.jorganchem.2008.01.035
-
[18]
(18) Li, B. Y.; Su, M. D. J. Phys. Chem. A 2012, 116, 4222. doi: 10.1021/jp3018138
-
[19]
(19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[20]
(20) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[21]
(21) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327. doi: 10.1016/0009-2614(96)00349-1
-
[22]
(22) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. doi: 10.1063/1.449486
-
[23]
(23) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736. doi: 10.1063/1.449360
-
[24]
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, 2009.
-
[25]
(25) Wang, X.; Huang, Y.; An, K.; Fan, J.; Zhu, J. J. Organomet. Chem. 2014, 770, 146. doi: 10.1016/j.jorganchem.2014.08.018
-
[26]
(26) Wang, X.; Zhu, C.; Xia, H.; Zhu, J. Organometallics 2014, 33, 1845. doi: 10.1021/om500170w
-
[27]
(27) Huang, Y.; Zhu, J. Chem. Asian J. 2015, 10, 405. doi: 10.1002/asia.v10.2
-
[28]
(28) Zhou, Z. Y.; Liu, M.; Su, Z. M.; Xie, Y. Z.; Ding, S. D.; Wang, H. J. Acta Phys. -Chim. Sin. 2011, 27, 2035. [周子彦, 刘敏, 苏忠民, 谢玉忠, 丁慎德, 王华静. 物理化学学报, 2011, 27, 2035.] doi: 10.3866/PKU.WHXB20110903
-
[29]
(29) Yang, G. H.; Li, Y. X.; Yan, S. H.; Dai, L.; Zhao, B. Acta Chim. Sin. 2011, 69, 1743. [杨国辉, 李言信, 颜世海, 代丽, 赵斌. 化学学报, 2011, 69, 1743.]
-
[30]
(30) Clavero, C.; Duran, M.; Lledos, A.; Ventura, O. N.; Bertran, J. J. Am. Chem. Soc. 1986, 108, 923. doi: 10.1021/ja00265a014
-
[31]
(31) Wang, Y.; Zeng, X. L. Acta Phys. -Chim. Sin. 2012, 28, 2831. [王岩, 曾小兰. 物理化学学报, 2012, 28, 2831.] doi: 10.3866/PKU.WHXB201208134
-
[32]
(32) Hajgató, B.; Takahashi, M.; Kira, M.; Veszprémi, T. Chem. -Eur. J. 2002, 8, 2126. doi: 10.1002/1521-3765(20020503)8:9 <2126::AID-CHEM2126>3.0.CO;2-2
-
[1]
-
-
-
[1]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[5]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[6]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[7]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[8]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[11]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[12]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[13]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[14]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[15]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[16]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[17]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[18]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[19]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[20]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[1]
Metrics
- PDF Downloads(165)
- Abstract views(857)
- HTML views(95)