Citation: LI Wan-Li, LIU Xiao-Yun, MIAO Yan-Qin, YANG Jun-Li, WU Cong-Ling, LI Yuan-Hao, GUO Kun-Peng, WANG Hua, XU Bing-She. MgF2 Modified Alq3 Nanocomposite: Synthesis and Improvement of Anti-Aging Performance of OLED[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1780-1786. doi: 10.3866/PKU.WHXB201507151 shu

MgF2 Modified Alq3 Nanocomposite: Synthesis and Improvement of Anti-Aging Performance of OLED

  • Available Online: 15 July 2015

    Fund Project: 国家自然科学基金(61307029, 21101111, 61205179, 61307030) (61307029, 21101111, 61205179, 61307030) 教育部新世纪人才计划(NCET-13-0927) (NCET-13-0927)科技部国际科技合作专项项目(2012DFR50460)资助 (2012DFR50460)

  • From the viewpoint of practical application, enhancing the stability and lifetime of organic lightemitting diodes (OLED) is a al of research. A MgF2 modified tris(8-hydroxyquinoline)-aluminum (Alq3) hybrid superstructure was realized by collosol infiltration of a Mg(CF3COO)2-x(CH3COO)x precursor onto Alq3. Alq3 was well-dispersed in a large amount of Mg(CF3COO)2-x(CH3COO)x gel precursor solution, and after concentration a well-dispersed composite paste was produced. By heating the paste to 300 ℃, Alq3 transformed to the superstructured ε-phase, and MgF2 homogeneously incorporated because of od gel precursor infiltration and in situ deposition. The MgF2-modified Alq3 nanocomposite with superstructure has the same electroluminescence (EL) spectrum as Alq3, with a dramatic improvement of the anti-aging performance of the OLED compared with Alq3 because of the uniform assembly and well-defined structure. The effect of the amount of Mg(CH3COO)2 reactant on the OLED device anti-aging performance was investigated. The results showed that for the Alq3-MgF2 nanocomposite with 5% (molar fraction) of the Mg(CH3COO)2 reactant, the luminance remained at the initial state of 93.5% after aging for 72 h in air. However, the luminance of the Alq3-based OLED almost disappeared after aging for 24 h under the same conditions. This work on inorganic material modified luminescent materials makes significant progress towards stable OLED.

  • 加载中
    1. [1]

      (1) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459 (7244), 234. doi: 10.1038/nature08003

    2. [2]

      (2) Xiao, L. X.; Chen, Z. J.; Qu, B.; Luo, J. X.; Kong, S.; ng, Q. H.; Kido, J. J. Advanced Materials 2011, 23 (8), 926. doi: 10.1002/adma.201003128

    3. [3]

      (3) Wu, H. B.; Ying, L.; Yang, W.; Cao, Y. Chemical Society Reviews 2009, 38 (12), 3391. doi: 10.1039/B816352a

    4. [4]

      (4) Wang, C. L.; Fei, T.; Li, F.; Ma, Y. G. Acta Phys. -Chim. Sin. 2010, 26 (2), 392. [王春雷, 费腾, 李峰, 马於光. 物理化学学报, 2010, 26 (2), 392.] doi: 10.3866/pku.whxb20100214

    5. [5]

      (5) Ding, G. Y.; Jiang, W. L.; Wang, J.; Ouyang, X. H.; Zeng, H. P. Acta Phys. -Chim. Sin. 2009, 25 (10), 2068. [丁桂英, 姜文龙, 汪津, 欧阳新华, 曾和平. 物理化学学报, 2009, 25 (10), 2068.] doi: 10.3866/PKU.WHXB20090937

    6. [6]

      (6) Moraes, I. R.; Scholz, S.; Lüssem, B.; Leo, K. Applied Physics Letters 2011, 99 (5), 53302. doi: 10.1063/1.3617459

    7. [7]

      (7) Seiferta, R.; Moraes, I. R.; Scholz, S.; Gathera, M. C.; Lüssema, B.; Leo, K. Organic Electronics 2013, 14 (1), 115. doi: 10.1016/j.orgel.2012.10.003

    8. [8]

      (8) Kim, S. Y.; Kim, K. Y.; Tak, Y. H.; Lee, J. L. Applied Physics Letters 2006, 89 (13), 132108. doi: 10.1063/1.2357568

    9. [9]

      (9) Melpignano, P.; Baron-Toaldo, A.; Biondo, V.; Priante, S.; Zamboni, R.; Murgia, M.; Caria, S.; Gre ratti, L.; Barinov, A.; Kiskinova, M. Applied Physics Letters2005, 86 (4), 041105. doi: 10.1063/1.1852706

    10. [10]

      (10) Liew, Y. F.; Aziz, H.; Hu, N. X.; Chan, H. S. O.; Xu, G.; Popovic, Z. Applied Physics Letters 2000, 77 (17), 2650. doi: 10.1063/1.1320459

    11. [11]

      (11) Tang, C.; VanSlyke, S. Applied Physics Letters 1987, 51 (12), 913. doi: 10.1063/1.98799

    12. [12]

      (12) Aziz, H.; Popovic, Z. D.; Hu, N. X.; Hor, A. M.; Xu, G. Science 1999, 283 (5409), 1900. doi: 10.1126/science.283.5409.1900

    13. [13]

      (13) Ko, Y. W.; Chung, C. H.; Lee, J. H.; Kim, Y. H.; Sohn, C. Y.; Kim, B. C.; Hwang, C. S.; Song, Y. H.; Lim, J.; Ahn, Y. J. Thin Solid Films 2003, 426 (1), 246. doi: 10.1016/S0040-6090(03)00007-5

    14. [14]

      (14) Aziz, H.; Popovic, Z.; Xie, S.; Hor, A. M.; Hu, N. X.; Tripp, C.; Xu, G. Applied Physics Letters 1998, 72 (7), 756. doi: 10.1063/1.120867

    15. [15]

      (15) Papadimitrakopoulos, F.; Zhang, X. M.; Thomsen, D.; Higginson, K. Chemistry of Materials 1996, 8 (7), 1363. doi: 10.1021/cm960152m

    16. [16]

      (16) Zhong, J.; Gao, Z.; Gao, J.; Dai, K.; Chen, J. Optical review 2012, 19 (2), 82. doi: 10.1007/s10043-012-0017-7

    17. [17]

      (17) Kim, E.; Han, Y.; Kim, W.; Choi, K. C.; Im, H. G.; Bae, B. S. Organic Electronics 2013, 14 (7), 1737. doi: 10.1016/j.orgel.2013.04.011

    18. [18]

      (18) Han, Y. C.; Jang, C.; Kim, K. J.; Choi, K. C.; Jung, K.; Bae, B. S. Organic Electronics 2011, 12 (4), 609. doi: 0.1016/j.orgel.2011.01.007

    19. [19]

      (19) Jung, K.; Bae, J. Y.; Park, S. J.; Yoo, S.; Bae, B. S. Journal of Materials Chemistry 2011, 21 (6), 1977. doi: 10.1039/C0JM02008G

    20. [20]

      (20) Yang, H.; Wang, X.; Duan, G.; Cui, Y.; Shen, L.; Xie, Y.; Sangdo, H. Materials Letters 2004, 58 (19), 2374. doi: 10.1016/j.matlet.2004.02.016

    21. [21]

      (21) Cui, Y.; Duan, G.; Yang, X.; Yang, H.; Feng, S. Materials Letters 2006, 60 (25), 3034. doi: 10.1016/j.matlet.2006.02.039

    22. [22]

      (22) Liu, X. Y.; Guo, S.; Wu, Y. L.; Miao, Y. Q.; Du, X. G.; Zhou, H. F.; Wang, H.; Guo, K. P. Acta Chim. Sin. 2013, 71 (7), 1017. [刘晓云, 郭颂, 武钰铃, 苗艳勤, 杜晓刚, 周禾丰, 王华, 郭鹍鹏. 化学学报, 2013, 71 (7), 1017.] doi: 10.6023/A13030298

    23. [23]

      (23) Bass, J. D.; Boissiere, C.; Nicole, L.; Grosso, D.; Sanchez, C. Chemistry of Materials 2008, 20 (17), 5550. doi: 10.1021/cm8010106

    24. [24]

      (24) Brinkmann, M.; Gadret, G.; Muccini, M.; Taliani, C.; Masciocchi, N.; Sironi, A. J. Am. Chem. Soc. 2000, 122 (21), 5147. doi: 10.1021/ja993608k

    25. [25]

      (25) Rajeswaran, M.; Blanton, T. N.; Tang, C. W.; Lenhart, W. C.; Switalski, S. C.; Giesen, D. J.; Antalek, B. J.; Pawlik, T. D.; Kondakov, D. Y.; Zumbulyadis, N.Polyhedron 2009, 28 (4), 835. doi: 10.1016/j.poly.2008.12.022

    26. [26]

      (26) Cölle, M.; Dinnebier, R. E.; Brütting, W. Chemical Communications 2002, 7 (23), 2908. doi: 10.1039/b209164j

    27. [27]

      (27) Leung, L. M.; Lo, W. Y.; So, S. K.; Lee, K. M.; Choi, W. K. J. Am. Chem. Soc. 2000, 122 (23), 5640. doi: 10.1021/ja000927z

    28. [28]

      (28) Li, W. L.; Wu, C. L.; Miao, Y. Q.; Li, Y. H.; Wang, H.; Guo, K. P. Chinese Journal of Luminescence 2015, 36 (2), 219. [李菀丽, 武聪伶, 苗艳勤, 李源浩, 王华, 郭鹍鹏. 发光学报, 2015, 36 (2), 219.] doi: 10.3788/fgxb20153602.0219


  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    10. [10]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(172)
  • Abstract views(404)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return