Citation: HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1715-1726. doi: 10.3866/PKU.WHXB201506231 shu

Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell

  • Received Date: 31 March 2015
    Available Online: 23 June 2015

    Fund Project: 国家自然科学基金(21363024) (21363024) 新疆师范大学博士科研启动基金(XJNUBS1228) (XJNUBS1228)新疆维吾尔自治区2013年度高校科研计划青年教师培育项目(XJEDU2013S29)资助 (XJEDU2013S29)

  • A nanocomposite composed of N-doped mesoporous carbon material (NDMPC) and carboxymethylated chitosan (CMCH) was fabricated by mechanical co-mixing and used as an enzyme matrix. A novel glucose/O2 enzymatic biofuel cell was fabricated with a Nafion ion-exchange membrane consisting of a laccase (Lac)-entrapped biocathode and glucose oxidase-incorporated bioanode. Enzyme electrodes were prepared by the dripping coat and air-dried method. The performance of the laccase-based electrode as a biocathode in a fuel cell and an oxygen electro-chemical sensor was characterized by cyclic voltammetry in combination with the rotating disk electrode technique, linear scanning voltammetry (LSV), and chronoamperometry. UV-Vis spectrometry and graphite furnace atomic absorption spectroscopy were used to investigate the configuration of enzyme molecules on the surface of electrode and to evaluate the enzyme loading of the matrix on the electrode interface. The results from the experiments showed that the laccasebased cathode displayed direct electron transfer between the active centre in laccase (T1) and the conductive matrix without any external electron mediators (apparent electron transfer rate 0.013 s-1). A minor overpotential for oxygen reduction (150 mV) was also observed. Through further comparison of the intra-molecule electron relay rate (1000 s-1), substrate turnover frequency (0.023 s-1), and previous enzyme-conductive matrix electron transfer rate, quantitative analysis showed that the latter was the rate-determining step in the whole catalytic cycle of the oxygen reduction reaction. This laccase-based electrode as an oxygen electrochemical sensor for detecting oxygen showed a low detection limit (0.04 μmol·dm-3), high sensitivity (12.1 μA·μmol-1·dm3), and affinity for oxygen (KM = 8.2 μmol·dm-3). This laccase-based cathode also had advantages such as excellent reproducibility, long-term usability, thermal stability, and pH endurance. The results for the fabricated biofuel cell showed an open circuit voltage of 0.38 V and a maximal energy output density of 19.2 μW·cm-2, maintaining greater than 60% of the initial value even after continuous work for 3 weeks under optimal conditions.

  • 加载中
    1. [1]

      (1) Armstrong, F. A.; Hirst, J. Pro Natl. Acad. Sci. U. S. A. 2011, 108, 14049. doi: 10.1073/pnas.1103697108

    2. [2]

      (2) Hussein, L.; Rubenwolf, S.; Von Stetten V.; Urban, G.; Zengerle, R.; Krueger, M.; Kerzenmacher, S. Biosens. Bioelectron. 2011, 26, 4133. doi: 10.1016/j.bios.2011.04.008

    3. [3]

      (3) Martinez-Ortiz, J.; Flores, R.; Vazquez-Duhalt, R. Biosens. Bioelectron. 2011, 26, 2626. doi: 10.1016/j.bios.2010.11.022

    4. [4]

      (4) Qiao, Y.; Li, C. M. J. Mater. Chem. 2011, 21, 4027. doi: 10.1039/C0JM02871A

    5. [5]

      (5) Zayats, M.; Katz, E.; Baron, R.; Willner, I. A. J. Am. Chem. Soc. 2005, 127, 12400. doi: 10.1021/ja052841h

    6. [6]

      (6) Liu, Y.; Qu, X. H.; Guo, H. W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosens. Bioelectron. 2006, 21, 2195. doi: 10.1016/j.bios.2005.11.014

    7. [7]

      (7) Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. C. 2009, 113, 6062. doi: 10.1021/jp8094159

    8. [8]

      (8) Jensen, U. B.; Lorcher, S.; Vagin, M.; Chevallier, J.; Shipovskov, S.; Koroleva, O.; Besenbacher, F.; Ferapontova, E. Electrochim. Acta 2012, 62, 218. doi: 10.1016/j.electacta.2011.12.026

    9. [9]

      (9) Osman, M. H.; Shah, A. A.; Walsh, F. C. Biosens. Bioelectron. 2011, 26, 3087. doi: 10.1016/j.bios.2011.01.004

    10. [10]

      (10) Ramasamy, R. P.; Luckarift, H. R.; Ivnitski, D. M.; Atanassov, P. B.; Johnson, G. R. Chem. Commun. 2010, 46, 6045. doi: 10.1039/c0cc00911c

    11. [11]

      (11) Mao, F.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2003, 125, 4951. doi: 10.1021/ja029510e

    12. [12]

      (12) Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun. 2004, 6, 237. doi: 10.1016/j.elecom.2003.12.006

    13. [13]

      (13) Xian, Y. Z.; Xian, Y.; Zhou, L. H.; Wu, F. H.; Ling, Y.; Jin, L, T. Electrochem. Commun. 2007, 9, 142. doi: 10.1016/j.elecom. 2006.08.049

    14. [14]

      (14) Wei, W.; Li, P. P.; Li, Y.; Cao, X. D.; Liu, S. Q. Electrochem. Commun. 2012, 22, 181. doi: 10.1016/j.elecom.2012.06.021

    15. [15]

      (15) Trohalaki, S.; Pachter, R.; Luckarift, H. R.; Johnson, G. R. Fuel Cells 2012, 12, 656. doi: 10.1002/fuce.v12.4

    16. [16]

      (16) Miyake, T.; Yoshino, S.; Yamada, T.; Hata, K.; Nishizawa, M. J. Am. Chem. Soc. 2011, 133, 5129. doi: 10.1021/ja111517e

    17. [17]

      (17) Zeng, H.; Liao, L. W.; Li, M. F.; Tao, Q.; Kang, J.; Chen, Y. X. Acta Phys. -Chim. Sin. 2010, 26, 3217. [曾涵, 廖铃文, 李明芳, 陶骞, 康婧, 陈艳霞. 物理化学学报, 2010, 26, 3217.] doi: 10.3866/PKU.WHXB20101208

    18. [18]

      (18) Zhu, Y. F.; Kaskel, S.; Shi, J. L.; Wage, T.; Pee, K. H. V. Chem. Mater. 2007, 19, 6408. doi: 10.1021/cm071265g

    19. [19]

      (19) Pang, H. L.; Liu, J.; Hu, D.; Zhang, X. H.; Chen, J. H. Electrochim. Acta 2010, 55, 6611. doi: 10.1016/j.electacta. 2010.06.013

    20. [20]

      (20) Kulisong, H.; Zeng, H. Chin. J. Appl. Chem. 2013, 30, 1194. [库里松•哈衣尔别克, 曾涵. 应用化学, 2013, 30, 1194.]

    21. [21]

      (21) Vinu, A. Adv. Funct. Mater. 2008, 18, 816.

    22. [22]

      (22) Qiu, H. J.; Xu, C. X.; Huang, X. R.; Ding, Y.; Qu, Y. B.; Gao, P. J. J. Phys. Chem. C. 2008, 112, 14781. doi: 10.1021/jp805600k

    23. [23]

      (23) Zhao, H. Y.; Zhou, H. M.; Zhang, J. X.; Zheng, W.; Zheng, Y. F. Biosens. Bioelectron. 2009, 25, 463. doi: 10.1016/j.bios. 2009.08.005

    24. [24]

      (24) Santucci, R.; Ferri, T.; Morpur , L.; Savini, I.; Avigliano, L. Biochem. J. 1998, 332, 611.

    25. [25]

      (25) Zheng, H.; Hu, J. B.; Li, Q. L. Acta Chim. Sin. 2006, 64, 806. [郑华, 胡劲波, 李启隆. 化学学报, 2006, 64, 806.]

    26. [26]

      (26) Freguia, S.; Virdis, B.; Harnisch, F.; Keller, J. Electrochim. Acta 2012, 82, 165. doi: 10.1016/j.electacta.2012.03.014

    27. [27]

      (27) Cracknell, J. A.; Vincent, K. A.; Armstrong, F. A. Chem. Rev. 2008, 108, 2439. doi: 10.1021/cr0680639

    28. [28]

      (28) Stolarczyk, K.; Lyp, D.; Zelechowska, K.; Biernat, J. F.; Rogalski, J.; Bilewicz, R. Electrochim. Acta 2012, 79, 74. doi: 10.1016/j.electacta.2012.06.050

    29. [29]

      (29) Wang, X. J.; Latonen, R. M.; Sjoberg-Eerola, P.; Eriksson, J. E.; Bobacka, J.; Boer, H.; Bergelin, M. J. Phys. Chem. C 2011, 111, 5919.

    30. [30]

      (30) Zhang, L. L.; Bai, L.; Xu, M.; Han, L.; Dong, S. J. Nano Ener. 2015, 11, 48. doi: 10.1016/j.nanoen.2014.10.020

    31. [31]

      (31) Tsujimura, S.; Kamitaka, Y.; Kano, K. Fuel Cells 2007, 7, 463.

    32. [32]

      (32) Soukharev, V.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2004, 126, 8368. doi: 10.1021/ja0475510

    33. [33]

      (33) Mano, N.; Kim, H. H.; Zhang, Y. C.; Heller, A. J. Am. Chem. Soc. 2002, 124, 6480. doi: 10.1021/ja025874v

    34. [34]

      (34) Jiang, D. S.; Long, S. Y.; Huang, J.; Xiao, H. Y.; Zhou, J. Y. Bio. Eng. J. 2005, 25, 15. doi: 10.1016/j.bej.2005.03.007

    35. [35]

      (35) Masson, J. F.; Kranz, C.; Mizaikoff, B. Anal. Chem. 2007, 79, 8531. doi: 10.1021/ac071090u

    36. [36]

      (36) Liu, Y.; Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosens. Bioelectron. 2005, 21, 984. doi: 10.1016/j.bios.2005.03.003

    37. [37]

      (37) Ikeda, T. Electrochim. Acta 2012, 82, 158. doi: 10.1016/j.electacta.2012.01.114

    38. [38]

      (38) Zheng, W.; Zhao, H. Y.; Zhang, J. X.; Zhou, H. M.; Xu, X. X.; Zheng, Y. F.; Wang, Y. B.; Cheng, Y.; Jang, B. Z. Electrochem. Commun. 2010, 12, 869. doi: 10.1016/j.elecom.2010.04.006

    39. [39]

      (39) Katz, E.; Willner, I.; Kotlyar, A. B. J. Electroanal. Chem. 1999, 479, 64. doi: 10.1016/S0022-0728(99)00425-8

    40. [40]

      (40) Li, X.; Zhang, L.; Su, L.; Ohsaka, T.; Mao, L. Fuel Cells 2019, 9, 85. doi: 10.1002/fuce.v9:1

    41. [41]

      (41) Ammam, M.; Fransaer, J. Biotechnol. Bioeng. 2012, 109, 1601. doi: 10.1002/bit.v109.7


  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(269)
  • Abstract views(880)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return