Citation: LIU Bai-Quan, GAO Dong-Yu, WANG Jian-Bin, WANG Xi, WANG Lei, ZOU Jian-Hua, NING Hong-Long, PENG Jun-Biao. Progress of White Organic Light-Emitting Diodes[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1823-1852. doi: 10.3866/PKU.WHXB201506192 shu

Progress of White Organic Light-Emitting Diodes

  • Received Date: 27 March 2015
    Available Online: 19 June 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2015CB655000) (973) (2015CB655000) 国家自然科学基金(51173049, 61401156) (51173049, 61401156) 广东省引进创新科研团队计划(201101C0105067115) (201101C0105067115) 广东省教育厅重点课题(2014KZDXM010, 2014GKXM012) (2014KZDXM010, 2014GKXM012) 中国科学院红外物理国家重点实验室开放课题(M201406) (M201406)广州市科技计划(2013Y2-00114)资助 (2013Y2-00114)

  • White organic light-emitting diodes (WOLEDs) are now approaching mainstream display markets, and they are also being aggressively investigated for next-generation lighting applications because of their extraordinary characteristics, such as high efficiency, high luminance, lower power consumption, wide viewing angle, fast switching, ultralight weight, and flexibility. In this paper, we first introduce the various approaches to realize WOLEDs, and then summarize the properties and differences of the four types of WOLEDs from the perspective of the emitting materials. The recent development of fluorescent, phosphorescent, fluorescent/ phosphorescent hybrid, and delayed fluorescence WOLEDs is comprehensively illustrated. By combining with our published works, we systematically review the device structures, design strategies, working mechanisms, physical theories, and electroluminescent processes of the reported WOLEDs. Then, the development of flexible WOLED is presented. Finally, the existing problems and trends of WOLEDs are discussed.

  • 加载中
    1. [1]

      (1) Tang, C. W.; VanSlyke, V. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799

    2. [2]

      (2) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Homes, A. B. Nature 1990, 1990, 539. doi: 10.1038/347539a0

    3. [3]

      (3) Ying, L.; Ho, C. L.; Wu, H.; Cao, Y.; Wong, W. Y. Adv. Mater. 2014, 26, 2459. doi: 10.1002/adma.v26.16

    4. [4]

      (4) Wu, H.; Ying, L.; Yang, W.; Cao, Y. Chem. Soc. Rev. 2009, 38, 3391. doi: 10.1039/b816352a

    5. [5]

      (5) Xu, Y. H.; Peng, J. B.; Cao, Y. Prog. Chem. 2006, 18 (4), 389. [许运华, 彭俊彪, 曹镛. 化学进展, 2006, 18 (4), 389.]

    6. [6]

      (6) Fan, C.; Yang, C. Chem. Soc. Rev. 2014, 43, 6439. doi: 10.1039/C4CS00110A

    7. [7]

      (7) Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943. doi: 10.1039/c0cs00160k

    8. [8]

      (8) Wang, X. P.; Mi, B. X.; Gao, Z. Q.; Guo, Q.; Huang, W. Acta Phys. Sin. 2011, 60 (8), 087808. [王旭鹏, 密保秀, 高志强, 郭晴, 黄维. 物理学报, 2011, 60 (8), 087808.]

    9. [9]

      (9) Wang, Q.; Ma, D. Chem. Soc. Rev. 2010, 39, 2387. doi: 10.1039/b909057f

    10. [10]

      (10) Wang, Q.; Ma, D. G. Chinese Journal of Liquid Cristals and Displays 2009, 24 (5), 617. [王琦, 马东阁. 液晶与显示, 2009, 24 (5), 617.]

    11. [11]

      (11) Mei, Q. B.; Weng, J. N.; Tong, B. H.; Tian, R. Q.; Jiang, Y. Z.; Hua, Q. F.; Huang, W. Acta Phys. -Chim. Sin. 2014, 30 (4), 589. [梅群波, 翁洁娜, 童碧海, 田汝强, 蒋渊知, 华庆芳, 黄维. 物理化学学报, 2014, 30 (4), 589.] doi: 10.3866/PKU.WHXB201402182

    12. [12]

      (12) Tang, P.; Xiao, J. J.; Zheng, C.; Wang, S.; Chen, R. F. Acta Phys. -Chim. Sin. 2013, 29 (4), 667. [汤鹏, 肖坚坚, 郑超, 王石, 陈润锋. 物理化学学报, 2013, 29(4), 667.] doi: 10.3866/PKU.WHXB201302062

    13. [13]

      (13) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl. Phys. Lett. 1994, 64, 815. doi: 10.1063/1.111023

    14. [14]

      (14) Yamae, K.; Kittichungchit, V.; Ide, N.; Ota, M.; Komoda, T. SID 2014 Digest 2014, 682.

    15. [15]

      (15) Hiyama, K.; Ito, H.; Okubo, Y.; Kita, H. SID 2014 Digest 2014, 679.

    16. [16]

      (16) http://www.l ledlight.com/index.do. (accessed Feb 05, 2015).

    17. [17]

      (17) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, S.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459, 234. doi: 10.1038/nature08003

    18. [18]

      (18) Duan, L.; Zhang, D. Q.; Wu, K. W.; Huang, X. Q.; Wang, L. D.; Qiu, Y. Adv. Funct. Mater. 2011, 21, 3540. doi: 10.1002/adfm.201100943

    19. [19]

      (19) Jou, J. H.; Shen, S. M.; Lin, C. R.; Wang, Y. S.; Chou, Y. C.; Chen, S. Z.; Jou, Y. C. Org. Electron. 2011, 12, 865. doi: 10.1016/j.orgel.2011.02.012

    20. [20]

      (20) Kalinowski, J.; Cocchi, M.; Virgili, D.; Fattori, V.; Williams, J. A. Adv. Mater. 2007, 19, 4000.

    21. [21]

      (21) Zhou, G.; Wong, W. Y.; Suo, S. J. Photochem. Photobiol. C: Photochem. Rev. 2010, 11, 133. doi: 10.1016/j.jphotochemrev.2011.01.001

    22. [22]

      (22) Yang, X.; Zhou, G.; Wong, W. Y. J. Mater. Chem. C 2014, 2, 1760. doi: 10.1039/c3tc31953a

    23. [23]

      (23) Liu, B.; Wang, L.; Zou, J.; Tao, H.; Su, Y.; Gao, D.; Xu, M.; Lan, L.; Peng, J. Synth. Met. 2013, 184, 5. doi: 10.1016/j.synthmet.2013.09.023

    24. [24]

      (24) Zhao, F.; Zhang, Z.; Liu, Y.; Dai, Y.; Chen, J.; Ma, D. Org. Electron. 2012, 13, 1049. doi: 10.1016/j.orgel.2012.03.005

    25. [25]

      (25) Yu, J.; Lin, H.; Wang, F.; Lin,Y.; Zhang, J.; Zhang, H.; Wang, Z.; Wei, B. J. Chem. Mater. 2012, 22, 22097. doi: 10.1039/c2jm34763f

    26. [26]

      (26) Chen, S.; Wu, Q.; Kong, M.; Zhao, X.; Yu, Z.; Jia, P.; Huang, W. J. Chem. Mater. C 2013, 1, 3508. doi: 10.1039/c3tc00766a

    27. [27]

      (27) D'Andrade, B. W.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2002, 14, 147.

    28. [28]

      (28) Forrest, S. R.; Bradley, D. D. C.; Thompson, M. E. Adv. Mater. 2003, 15, 1043. doi: 10.1002/adma.200302151

    29. [29]

      (29) VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. doi: 10.1063/1.117151

    30. [30]

      (30) Féry, C.; Racine, B.; Vaufrey, D.; Doyeux, H.; Cinà. S. Appl. Phys. Lett. 2005, 87, 213502. doi: 10.1063/1.2133922

    31. [31]

      (31) Chu, T. Y.; Chen, J. F.; Chen, S. Y.; Chen, C. H. Appl. Phys. Lett. 2006, 89, 113502. doi: 10.1063/1.2348089

    32. [32]

      (32) Yu, J. N.; Zhang, M. Y.; Li, C.; Shang, Y. Z.; Lv, Y. F.; Wei, B.; Huang, W. Chin. Phys. B 2012, 21, 083303. doi: 10.1088/1674-1056/21/8/083303

    33. [33]

      (33) Kido, J.; Shionoya, H.; Nagai, K. Appl. Phys. Lett. 1995, 67, 2281. doi: 10.1063/1.115126

    34. [34]

      (34) Zhang, B.; Tan, G.; Lam, C. S.; Yao, B.; Ho, C. L.; Liu, L.; Xie, Z.; Wong, W. Y.; Ding, J.; Wang, L. Adv. Mater. 2012, 24, 1873. doi: 10.1002/adma.v24.14

    35. [35]

      (35) Zou, J.; Wu, H.; Lam, C. S.; Wang, C.; Zhu, J.; Zhong, C.; Hu, S.; Ho, C. L.; Zhou, G. J.; Wu, H. B.; Choy, W. C. H.; Peng, J.; Cao, Y.; Wong, W. Y. Adv. Mater. 2011, 23, 2976. doi: 10.1002/adma.v23.26

    36. [36]

      (36) Zou, J.; Liu, J.; Wu, H.; Yang, W.; Peng, J.; Cao, Y. Org. Electron. 2009, 10, 843. doi: 10.1016/j.orgel.2009.04.007

    37. [37]

      (37) Yu, L.; Hu, S.; He, R.; Yang, W.; Wu, H.; Peng, J.; Xia, R.; Bradley, D. D. C. Adv. Fuct. Mater. 2013, 23, 4366. doi: 10.1002/adfm.v23.35

    38. [38]

      (38) Wu, H.; Zou, J.; Liu, F.; Wang, L.; Mikhailovsky, A.; Bazan, G. C.; Yang, W.; Cao, Y. Adv. Mater. 2008, 20, 696.

    39. [39]

      (39) Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332. doi: 10.1126/science.267.5202.1332

    40. [40]

      (40) Cao, J.; Liu, X.; Zhang, X. B.; Ji, F. X.; Zhu, W. Q.; Jiang, X. Y.; Zhang, Z. L.; Xu, S. H. Acta Phys. Sin. 2007, 56 (2), 1088. [曹进, 刘向, 张晓波, 委福祥, 朱文清, 姜雪茵, 张志琳, 许少鸿. 物理学报, 2007, 56 (2), 1088.]

    41. [41]

      (41) Cao, J.; Jiang, X. Y.; Zhang, Z. L. Acta Phys. Sin. 2007, 56 (6), 3493. [曹进, 姜雪茵, 张志琳. 物理学报, 2007, 56 (6), 3493.]

    42. [42]

      (42) Dodabalapur, A.; Rothberg, L. J.; Miller, T. M. Appl. Phys. Lett. 1994, 65, 2308. doi: 10.1063/1.112726

    43. [43]

      (43) Hsu, S. F.; Lee, C. C.; Hwang, S. W.; Chen, C. H. Appl. Phys. Lett. 2005, 86, 253508. doi: 10.1063/1.1953883

    44. [44]

      (44) Liu, C.; Liu, S.; Tien, K.; Hsu, M.; Chang, H.; Chang, C.; Yang, C.; Wu, C. Appl. Phys. Lett. 2009, 94, 103302. doi: 10.1063/1.3097354

    45. [45]

      (45) Thomschke, M.; Reineke, S.; Lussem, B.; Leo, K. Nano Lett. 2012, 12, 424. doi: 10.1021/nl203743p

    46. [46]

      (46) Schlotter, P.; Schmidt, R.; Schneider, J. Appl. Phys. A: Mater. Sci. Process A 1997, 64, 417. doi: 10.1007/s003390050498

    47. [47]

      (47) Duggal, A. R.; Shiang, J. J.; Heller, C. M.; Foust, D. F. Appl. Phys. Lett. 2002, 80, 3470. doi: 10.1063/1.1478786

    48. [48]

      (48) Krummacher, B. C.; Choong, V. Mathai, M. K.; Choulis, S. A.; So, F.; Jermann, F.; Fiedler, T.; Zachau, M. Appl. Phys. Lett. 2006, 88, 113506. doi: 10.1063/1.2186080

    49. [49]

      (49) Ji, W.; Zhang, L.; Gao, R.; Zhang, L.; Xie, W.; Zhang, H.; Li, B. Opt. Express 2008, 16 (20), 15489. doi: 10.1364/OE.16.015489

    50. [50]

      (50) hri, V.; Hofmann, S.; Reineke, S.; Rosenow, T.; Thomschke, M.; Levichkova, M.; Lussem, B.; Leo, K. Org. Electron. 2011, 12, 2126. doi: 10.1016/j.orgel.2011.09.002

    51. [51]

      (51) Lee, J.; Chopra, N.; Bera, D.; Maslow, S.; Eom, S. H.; Zheng, Y.; Holloway, P.; Xue, J.; So, F. Adv. Energy Mater. 2011, 1, 174. doi: 10.1002/aenm.201000014

    52. [52]

      (52) Kido, J.; Matsumoto, T.; Nakada, T.; Endo, J.; Mori, K.; Kawamura, N.; Yokoi, A. Dig. Tech. Pap. -Soc. Inf. Disp. Int. Symp. 2003, 34, 964. doi: 10.1889/1.1832444

    53. [53]

      (53) Ding, L.; Tang, X.; Xu, M. F.; Shi, X. B.; Wang, Z. K.; Liao, L. S. ACS Appl. Mater. Interfaces 2014, 6 (20), 18228.

    54. [54]

      (54) Ding, L.; Sun, Y. Q.; Chen, H.; Zu, F. S.; Wang, Z. K.; Liao, L. S. J. Mater. Chem. C 2014, 2, 10403. doi: 10.1039/C4TC02082K

    55. [55]

      (55) Liu, J.; Wang, J.; Huang, S.; Shi, X.; Wu, X.; He, G. Org. Electron. 2013, 14, 1337. doi: 10.1016/j.orgel.2013.02.035

    56. [56]

      (56) Chen, Y.; Ma, D. J. Mater. Chem. 2012, 22, 18718. doi: 10.1039/c2jm32246c

    57. [57]

      (57) Guo, F.; Ma, D. Appl. Phys. Lett. 2005, 87, 173510. doi: 10.1063/1.2120898

    58. [58]

      (58) Chang, C. C.; Chen, J. F.; Hwang, S. W.; Chen, C. H. Appl. Phys. Lett. 2005, 87, 253501. doi: 10.1063/1.2147730

    59. [59]

      (59) Son, Y. H.; Kim, Y. J.; Park, M. J.; Oh, H. Y.; Park, J. S.; Yang, J. H.; Suh, M. C.; Kwon, J. H. J. Mater. Chem. C 2013, 1, 5008. doi: 10.1039/c3tc30671b

    60. [60]

      (60) Gebler, D. D.; Wang, Y. Z.; Blatchford, J. W.; Jessen, S. W.; Fu, D. K.; Swager, T. M.; MacDiarmid, A. G.; Epstein, A. J. Appl. Phys. Lett. 1997, 70, 1644. doi:10.1063/1.118657

    61. [61]

      (61) Chao, C. I.; Chen, S. A. Appl. Phys. Lett. 1998, 73, 426. doi: 10.1063/1.121888

    62. [62]

      (62) Feng, J.; Li, F.; Gao, W.; Liu, S.; Liu, Y.; Wang, Y. Appl. Phys. Lett. 2001, 78, 3947. doi: 10.1063/1.1379788

    63. [63]

      (63) Liu, Y.; Guo, J.; Zhang, H.; Wang, Y. Angew. Chem. Int. Edit. 2002, 41 (1), 182 doi: 10.1002/1521-3773(20020104)41:1%3C%3E1.0.CO;2-5

    64. [64]

      (64) Hung, W. Y.; Fang, G. C.; Lin, S. W.; Cheng, S. H.; Wong, K. T.; Kuo, T. Y.; Chou, P. T. Sci. Rep. 2014, 4, 5161.

    65. [65]

      (65) Bai, F. L. Chemistry 1985, 6, 31. [白凤莲. 化学通报, 1985, 6, 31.].

    66. [66]

      (66) D'Andrade, B. W.; Brooks, J.; Adamovich, V.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2002, 14, 1032. doi: 10.1002/1521-4095(20020805)14:15%3C1032::AID-ADMA1032%3E3.0.CO;2-6

    67. [67]

      (67) Adamovich, V.; Brooks, J.; Tamayo, A.; Alexander, A. M.; Djurovich, P. I.; D'Andrade, B. W.; Adachi, C.; Forrest, S. R.; Thompson, M. E. New. J. Chem. 2002, 26, 1171. doi:10.1039/b204301g

    68. [68]

      (68) Fleetham, T.; Ecton, J.; Wang, Z.; Bakken, N.; Li, J. Adv. Mater. 2013, 25, 2573. doi: 10.1002/adma.201204602

    69. [69]

      (69) Duan, Y.; Mazzeo, M.; Maiorano, V.; Qin, D.; Cin lani, R.; Gigli, G. J. Appl. Phys. 2008, 92, 113304.

    70. [70]

      (70) Khan, M. A.; Xu, W.; Cao, J.; Bai, Y.; Zhu, W. Q.; Jiang, X. Y.; Zhang, Z. L. Displays 2007, 28, 26. doi: 10.1016/j.displa.2006.11.003

    71. [71]

      (71) Wang, J.; Zhang, F.; Zhang, J.; Tang, W.; Tang, A.; Peng, H.; Xu, Z.; Teng, F.; Wang, Y. J. Phototech. Photobiol. C 2013, 17, 69. doi: 10.1016/j.jphotochemrev.2013.08.001

    72. [72]

      (72) Chen, J.; Zhao, F.; Ma, D. Mater. Today 2014, 17 (4), 175. doi: 10.1016/j.mattod.2014.04.002

    73. [73]

      (73) Zhao, F. C.; Chen, Y. H.; Wang, Q.; Ma, D. G. Scientia Sinica Chimica 2013, 43 (4), 398. [赵方超, 陈永华, 王琦, 马东阁. 中国科学: 化学, 2013, 43 (4), 398.] doi:10.1360/032013-51

    74. [74]

      (74) Rosenow, T. C.; Furno, M.; Reineke, S.; Olthof, S.; Lussem, B.; Leo, K. J. Appl. Phys. 2010, 108, 113113. doi: 10.1063/1.3516481

    75. [75]

      (75) Uoyama, H.; ushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. doi: 10.1038/nature11687

    76. [76]

      (76) Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706. doi: 10.1021/ja306538w

    77. [77]

      (77) Nomura, H.; Masui, K.; Nishide, J.; Shibata, T.; Adachi, C. Sci. Rep. 2013, 3, 2127.

    78. [78]

      (78) Chuen, C. H.; Tao, Y. T. Appl. Phys. Lett. 2002, 81, 4499. doi: 10.1063/1.1528736

    79. [79]

      (79) Chuen, C. H.; Tao, Y. T.; Wu, F. I.; Shu, S. F. Appl. Phys. Lett. 2004, 85, 4609. doi: 10.1063/1.1824178

    80. [80]

      (80) Li, G.; Shinar, J. Appl. Phys. Lett. 2003, 83, 5359. doi: 10.1063/1.1635658

    81. [81]

      (81) Fadhel, O.; Gras, M.; Lemaitre, N; Deborde, V.; Hissler, M.; Geffroy, R. R. Adv. Mater. 2009, 21, 1261. doi: 10.1002/adma.v21:12

    82. [82]

      (82) Chang, M. Y.; Wu, C. C.; Lin, S. C.; Chen, Y. F. J. Electronchem. Soc. 2009, 156 (1), J1.

    83. [83]

      (83) Kim, N. H.; Kim, Y. H.; Yoon, J. A.; Lee, S. Y.; Ryu, D. H.; Wood, R.; Moon, C. B.; Kim, W. Y. J. Lumin. 2013, 143, 723. doi: 10.1016/j.jlumin.2013.05.048

    84. [84]

      (84) Cheon, K. O.; Shinar, J. Appl. Phys. Lett. 2002, 81, 1738. doi: 10.1063/1.1498500

    85. [85]

      (85) Ho, M.; Hsu, S.; Ma, J.; Hwang, S.; Yeh, P.; Chen, C. H. Appl. Phys. Lett. 2007, 91, 113518. doi: 10.1063/1.2784971

    86. [86]

      (86) Yang, Y.; Peng, T.; Ye, K.; Wu, Y.; Liu, Y.; Wang, W. Org. Electron. 2011, 12, 29. doi: 10.1016/j.orgel.2010.10.006

    87. [87]

      (87) Zhang, S.; Xie, G.; Xue, Q.; Zhang, Z.; Zhao, L.; Luo, Y.; Yue, S.; Zhao, Y.; Liu, S. Thin Solid Films 2012, 520, 2966. doi: 10.1016/j.tsf.2011.10.148

    88. [88]

      (88) Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B 1999, 60, 14422. doi: 10.1103/PhysRevB.60.14422

    89. [89]

      (89) Ma, Y.; Zhang, H.; Shen, J.; Che, C. Synthetic Met. 1998, 94, 245. doi: 10.1016/S0379-6779(97)04166-0

    90. [90]

      (90) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; D. F.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. doi: 10.1038/25954

    91. [91]

      (91) D'Andrade, B. W.; Holmes, R. J.; Forrest, S. R. Adv. Mater. 2004, 16, 624.

    92. [92]

      (92) Wang, Q.; Ding, J.; Ma, D.; Cheng, Y.; Wang, L.; Jing, X.; Wang, F. Adv. Funct. Mater. 2009, 19, 84. doi: 10.1002/adfm.v19:1

    93. [93]

      (93) Wang, Q.; Ding, J.; Zhang, Z.; Ma, D.; Cheng, Y.; Wang, L.; Wang, F. J. Appl. Phys. 2009, 105, 076101. doi: 10.1063/1.3106051

    94. [94]

      (94) Zhao, X. H.; Zhang, Z. S.; Qian, Y.; Yi, M. D.; Xie, L. H.; Hu, C. P.; Xie, G. H.; Xu, H.; Han, C. M.; Zhao, Y.; Huang, W. J. Mater. Chem. C 2013, 1, 3482 doi: 10.1039/c3tc00875d

    95. [95]

      (95) ng, S.; Chen, Y.; Luo, J.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. Adv. Funct. Mater. 2011, 21, 1168. doi: 10.1002/adfm.201002066

    96. [96]

      (96) Huang, H.; Yang, X.; Wang, Y.; Pan, B.; Wang, L.; Chen, J.; Ma, D.; Yang, C. Org. Electron. 2013, 14, 2573. doi: 10.1016/j.orgel.2013.06.011

    97. [97]

      (97) Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D. J. Mater. Chem. C 2014, 2, 2466. doi: 10.1039/c3tc32388a

    98. [98]

      (98) Liu, B.; Wang, L.; Xu, M.; Tao, H.; Xia, X.; Zou, J.; Su, Y.; Gao, D.; Lan, L.; Peng, J. J. Mater. Chem. C 2014, 2, 5870.

    99. [99]

      (99) Yu, X. M.; Kwok, H. S.; Wong, W. Y.; Zhou, G. J. Chem. Mater. 2006, 18, 5097. doi: 10.1021/cm061030p

    100. [100]

      (100) Su, S. J.; nmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189.

    101. [101]

      (101) Wang, Q.; Ding, J.; Ma, D.; Cheng, Y.; Wang, L.; Wang, F. Adv. Mater. 2009, 21, 2397. doi: 10.1002/adma.v21:23

    102. [102]

      (102) Chang, Y. L.; Song, Y.; Wang, Z.; Helander, M. G.; Qiu, J.; Chai, L.; Liu, Z.; Scholes, G. D.; Lu, Z. Adv. Funct. Mater. 2013, 23, 705. doi: 10.1002/adfm.v23.6

    103. [103]

      (103) Wang, L.; Lei, G. T.; Yi, X. H. Prog. Chem. 2008, 20 (7/8), 1050. [汪磊, 雷钢铁, 易晓华. 化学进展, 2008, 20 (7/8), 1050.]

    104. [104]

      (104) Zhang, S.; Liu, Z.; Wang, X.; Yue, S.; Zhang, Z.; Wu, Q.; Xie, G.; Xue, Q.; Chen, Y.; Wang, P.; Guo, R.; Qu, D.; Zhao, Y.; Liu, S. Thin Solid Films 2013, 537, 221. doi:10.1016/j.tsf. 2013.04.036

    105. [105]

      (105) Wang, X.; Zhang, S.; Liu, Z.; Yue, S.; Zhang, Z.; Chen, Y.; Xie, G.; Xue, Q.; Zhao, Y.; Liu, S. J. Lumin. 2013, 137, 59. doi: 10.1016/j.jlumin.2012.12.031

    106. [106]

      (106) Liu, B.; Tao, H.; Su, Y. J.; Gao, D. Y.; Lan, L. F.; Zou, J. H.; Peng, J. B. Chin. Phys. B 2013, 22 (7), 077303.

    107. [107]

      (107) Li, F.; Cheng, G.; Zhao, Y.; Feng, J.; Liu, S.; Zhang, M.; Ma, Y.; Shen, J. Appl. Phys. Lett. 2003, 83, 4716. doi: 10.1063/1.1632545

    108. [108]

      (108) Qin, D.; Tao, Y. Appl. Phys. Lett. 2005, 86, 113507. doi: 10.1063/1.1879108

    109. [109]

      (109) Xie, W.; Zhao, Y.; Li, C.; Liu, S. Semincond. Sci. Technol. 2005, 20, 326. doi: 10.1088/0268-1242/20/3/013

    110. [110]

      (110) Li, J. F.; Chen, S. F.; Su, S. H.; Hwang, K. S.; Yokoyama, M. J. Electronchem. Soc. 2006, 153 (11), H195.

    111. [111]

      (111) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908. doi: 10.1038/nature04645

    112. [112]

      (112) Schwartz, G.; Fehse, K.; Pferiffer, M.; Walzer, K.; Leo, K. Appl. Phys. Lett. 2006, 89, 083509. doi: 10.1063/1.2338588

    113. [113]

      (113) Yan, B. P.; Cheung, C. C. C.; Kui, S. C. F.; Xiang, H. F.; Roy, V. A. L.; Xu, S. J.; Che, C. M. Adv. Mater. 2007, 19, 3599.

    114. [114]

      (114) Chen, P.; Xie, W.; Li, J.; Guan, T.; Duan, Y.; Zhao, Y.; Liu, S.; Ma, C.; Zhang, L.; Li, B. Appl. Phys. Lett. 2007, 91, 023505. doi: 10.1063/1.2757096

    115. [115]

      (115) Ho, C. L.; Wong, W. Y.; Wang, Q.; Ma, D.; Wang, L.; Lin, Z. Adv. Funct. Mater. 2008, 18, 928.

    116. [116]

      (116) You, H.; Ma, D. J. Phys. D: Appl. Phys. 2008, 41, 155113. doi: 10.1088/0022-3727/41/15/155113

    117. [117]

      (117) Zhou, G.; Yang, X.; Wong, W. Y.; Wang, Q.; Suo, S.; Ma, D.; Feng, J.; Wang, L. ChemPhysChem 2011, 12, 2836. doi: 10.1002/cphc.v12.15

    118. [118]

      (118) Wang, Q.; Ho, C. L.; Zhao, Y.; Ma, D.; Wong, W. Y.; Wang, L. Org. Electron. 2010, 11, 238. doi: 10.1016/j.orgel.2009.11.001

    119. [119]

      (119) Liu, B.; Xu, M.; Wang, L.; Su, Y.; Gao, D.; Tao, H.; Lan, L.; Zou, J.; Peng, J. Appl. Phys. Express 2013, 6, 122101. doi: 10.7567/APEX.6.122101

    120. [120]

      (120) Liu, B.; Xu, M.; Wang, L.; Yan, X.; Tao, H.; Su, Y.; Gao, D.; Lan, L.; Zou, J.; Peng, J. Org. Electron. 2014, 15, 926. doi: 10.1016/j.orgel.2014.02.005

    121. [121]

      (121) Yang, X. H.; Zheng, S. J.; Chae, H. S.; Li, S.; Mochizuki, A.; Jabbour, G. E. Org. Electron. 2013, 14, 2023. doi: 10.1016/j.orgel.2013.03.012

    122. [122]

      (122) Liu, B.; Xu, M.; Wang, L.; Tao, H.; Su, Y.; Gao, D.; Lan, L.; Zou, J.; Peng, J. Phys. Status Solidi RRL 2014, 8 (8), 719.

    123. [123]

      (123) Liu, B.; Wang, L.; Xu, M.; Tao, H.; Zou, J.; Gao, D.; Lan, L.; Ning, H.; Peng, J.; Cao, Y. Sci. Rep. 2014, 4, 7198. doi: 10.1038/srep07198

    124. [124]

      (124) Wang, Y.; Hua, Y.; Wu, X.; Zhang, L.; Hou, Q.; Zhang, N.; Ma, L.; Cheng, X.; Yin, S. Appl. Phys. Lett. 2008, 93, 113302. doi: 10.1063/1.2976132

    125. [125]

      (125) Leem, D. S.; Kim, J. W.; Jung, S. O.; Kim, S. O.; Kim, S. H.; Kim, K. Y.; Kim, Y. H.; Kwon, S. K.; Kim, J. J. J. Phys. D: Appl. Phys. 2010, 43, 405102. doi: 10.1088/0022-3727/43/40/405102

    126. [126]

      (126) Schwartz, G.; Ke, T. H.; Wu, C. C.; Walzer, K.; Leo, K. Appl. Phys. Lett. 2008, 93, 073304. doi: 10.1063/1.2973151

    127. [127]

      (127) Schwartz, G.; Reineke, S.; Rosenow, T. C.; Walzer, K.; Leo, K. Adv. Funct. Mater. 2009, 19, 1319. doi: 10.1002/adfm.v19:9

    128. [128]

      (128) Che, C. M.; Chan, S. C.; Xiang, H. F.; Chan, M. C. W.; Liu, Y.; Wang, Y. Chem. Commun. 2004, 1484.

    129. [129]

      (129) Chen, Y.; Zhao, F.; Zhao, Y.; Chen, J.; Ma, D. Org. Electron. 2012, 13, 2807. doi: 10.1016/j.orgel.2012.08.031

    130. [130]

      (130) Liu, B.; Xu, M.; Wang, L.; Zou, J.; Tao, H.; Su, Y.; Gao, D.; Ning, H.; Lan, L.; Peng, J. Org. Electron. 2014, 15, 2616. doi: 10.1016/j.orgel.2014.07.033

    131. [131]

      (131) Schwartz, G.; Pferiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672.

    132. [132]

      (132) Sun, N.; Wang, Q.; Zhao, Y.; Chen, Y.; Yang, D.; Zhao, F.; Chen, J.; Ma, D. Adv. Mater. 2014, 26, 1617. doi: 10.1002/adma.v26.10

    133. [133]

      (133) Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.; Adachi, C. Mater. Horiz. 2014, 1, 264. doi: 10.1039/C3MH00079F

    134. [134]

      (134) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931. doi: 10.1002/adma.v26.47

    135. [135]

      (135) Yang, B.; Ma, Y. G. Scientia Sinica Chimica 2013, 43, 1457. [杨兵, 马於光. 中国科学: 化学, 2013, 43, 1457.]

    136. [136]

      (136) Nishide, J.; Nakanotani, H.; Hiraga, Y.; Adachi, C. Appl. Phys. Lett. 2014, 104, 233304. doi: 10.1063/1.4882456

    137. [137]

      (137) Zhang, D.; Duan, L.; Li, Y.; Zhang, D.; Qiu, Y. J. Mater. Chem. C 2014, 2, 8191. doi: 10.1039/C4TC01289E

    138. [138]

      (138) MacDonald, W. A. J. Mater. Chem. 2004, 14, 4. doi: 10.1039/b310846p

    139. [139]

      (139) Choi, M. C.; Kim, Y.; Ha, X. S. Prog. Polym. Sci. 2008, 33, 581. doi: 10.1016/j.progpolymsci.2007.11.004

    140. [140]

      (140) Mazzeo, M.; Mariano, F. Genco, A.; Carallo, S.; Gigli, G. Org. Electron. 2013, 14, 2840. doi: 10.1016/j.orgel.2013.07.034

    141. [141]

      (141) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477. doi: 10.1038/357477a0

    142. [142]

      (142) Gu, G.; Burrows, P. E.; Venkatesh, S.; Forrest, S. R. Opt. Lett. 1997, 22, 172. doi: 10.1364/OL.22.000172

    143. [143]

      (143) Wang, Z. B.; Helander, M. G.; Qiu, J.; Puzzo, D. P.; Greiner, M. T.; Hudson, Z. M.; Wang, S.; Liu, Z. W.; Lu, Z. H. Nature Photon. 2011, 5, 753. doi:10.1038/nphoton.2011.259

    144. [144]

      (144) Wang, L.; Xu, M.; Lan, L. F.; Zou, J. H.; Tao, H.; Xu, H.; Li, M.; Luo, D. X.; Peng, J. B. Scientia Sinica Chimica 2013, 43, 1383. [王磊, 徐苗, 兰林锋, 邹建华, 陶洪, 徐华, 李民, 罗东向, 彭俊彪. 中国科学: 化学, 2013, 43, 1383.]

    145. [145]

      (145) Xu, H.; Luo, D.; Li, M.; Xu, M.; Zou, J.; Tao, H.; Lan, L.; Wang, L.; Peng, J.; Cao, Y. J. Mater. Chem. C 2014, 2, 1255. doi: 10.1039/C3TC31710B

    146. [146]

      (146) Mikami, A.; Koshiy, T.; Tsubokawa, T. Jpn. J. Appl. Phys. 2005, 44, 608. doi: 10.1143/JJAP.44.608

    147. [147]

      (147) Jou, J. H.; Wang, C. P.; Wu, M. H.; Lin, H. W.; Pan, H. C.; Liu, B. H. J. Mater. Chem. 2010, 20, 6626. doi: 10.1039/c0jm01348j

    148. [148]

      (148) Ji, W.; Zhao, J.; Sun, Z.; Xie, W. Org. Electron. 2011, 12, 1137. doi: 10.1016/j.orgel.2011.03.042

    149. [149]

      (149) Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Nature Photon. 2012, 6, 105. doi: 10.1038/nphoton.2011.318

    150. [150]

      (150) Li, N.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Sadana, D. K.; Chen, T. C. Nature Commun. 2013, 4, 2294.

    151. [151]

      (151) Liu, B.; Wang, L.; Xu, M.; Tao, H.; Gao, D.; Zou, J.; Lan, L.; Ning, H.; Peng, J.; Cao, Y. J. Mater. Chem. C 2014, 2, 9836. doi: 10.1039/C4TC01582G

    152. [152]

      (152) Sasabe, H.; Kido, J. J. Mater. Chem. C 2013, 1, 1699. doi: 10.1039/c2tc00584k

    153. [153]

      (153) Ye, H.; Chen, D.; Liu, M.; Su, S. J.; Wang, Y. F.; Lo, C. C.; Lien, A.; Kido, J. Adv. Funct. Mater. 2014, 24, 3268. doi: 10.1002/adfm.201303785

    154. [154]

      (154) Yang, Y.; Chen, S. F.; Xie, J.; Chen, C. Y.; Shao, M.; Guo, X.; Huang, W. Acta Phys. Sin. 2011, 60 (4), 047809. [杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 物理学报, 2011, 60 (4), 047809.]

    155. [155]

      (155) Tsutsui, T.; Yahiro, M.; Yokogawa, H.; Kawano, K.; Yokoyama, M. Adv. Mater. 2001, 13, 1149.

    156. [156]

      (156) Zhou, J.; Ai, N.; Wang, L.; Zheng, H.; Luo, C.; Jiang, Z.; Yu, S.; Cao, Y.; Wang, J. Org. Electron. 2011, 12, 648. doi: 10.1016/j.orgel.2011.01.018

    157. [157]

      (157) Ou, Q. D.; Zhou, L.; Li, Y. Q.; Chen, S.; Chen, J. D.; Li, C.; Wang, Q. K.; Lee, S. T.; Tang, J. X. Adv. Funct. Mater. 2014, 24, 7249. doi: 10.1002/adfm.v24.46

    158. [158]

      (158) Zhang, Y.; Lee. J.; Forrest, S. R. Nat. Commun. 2014, 5, 5008. doi: 10.1038/ncomms6008


  • 加载中
    1. [1]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    11. [11]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    12. [12]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    15. [15]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(1297)
  • Abstract views(1001)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return