Citation: JIN Zhen-Yu, LI Tong, LU An-Hui. Nitrogen-Enriched Hierarchical Porous Carbon for Carbon Dioxide Adsorption and Separation[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1602-1608. doi: 10.3866/PKU.WHXB201506181
-
Hierarchical nitrogen-enriched porous carbon containing micropores, mesopores, and macropores were prepared by a nanocasting pathway using a Schiff base precursor and SBA-15 as the hard template. The specific surface area and pore volume of the obtained porous carbon are 752 m2·g-1 and 0.79 cm3·g-1, respectively. The nitrogen content is as high as 7.85% (w). The porous carbon shows a CO2 capacity of 97 cm3·g-1 at ambient pressure and 273 K. The CO2/N2 and CO2/CH4 separation ratios (molar ratios) are accordingly 7.0 and 3.2, and the Henry's low pressure selectivities are 23.3 and 4.2, respectively. CO2 adsorption tests confirmed that the micropores play a dominant role and nitrogen-containing functional groups play a synergistic role. The predicted ideal adsorbed solution theory (IAST) selectivities of the two-component mixed stream are 40 (CO2/N2) and 18 (CO2/CH4) by Toth mode simulation.
-
-
[1]
(1) limate Change 2007: The Physical Science Basis; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Miller, H. L. Ed; Cambridge Press: New York, 2007.
-
[2]
(2) Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R.; Masson-Delmotte, V.; Mark, P.; Maureen, R.; Dana, L. R.; Zachos, J. C. Open Atmos. Sci. 2008, 2, 217. doi: 10.2174/1874282300802010217
-
[3]
(3) Song, C. Catal. Today 2006, 115, 2. doi: 10.1016/j.cattod. 2006.02.029
-
[4]
(4) Zhang, Y. T.; Fan, L. H.; Zhang, L.; Chen, H. L. Chem. Eng. (China) 2009, 37, 75. [张亚涛, 范立海, 张林, 陈欢林. 化学工程, 2009, 37, 75.]
-
[5]
(5) Phan, A.; Doonan, C. J.; Uribe-romo, F. J.; Knobler, C. B.; O' keeffe, M.; Yaghi, O. M. Accounts Chem. Res. 2010, 43, 58. doi: 10.1021/ar900116g
-
[6]
(6) Hao, G. P.; Jin, Z. Y.; Sun, Q.; Zhang, X. Q.; Zhang, J.; Lu, A. H. Energy Environ. Sci. 2013, 6, 3740. doi: 10.1039/c3ee41906a
-
[7]
(7) Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H. C. Angew. Chem. Int. Edit. 2012, 51, 480.
-
[8]
(8) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. doi: 10.1021/ja8036096
-
[9]
(9) Lu, W.; Sculley, J, P.; Yuan, D.; Krishna, R.; Zhou, H. C. J. Phys. Chem. C 2013, 117, 4057.
-
[10]
(10) Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K.; Boyd, P. G.; Alavi, S.; Woo, T. K. Angew. Chem. Int. Edit. 2012, 124, 1862. doi: 10.1002/ange.v124.8
-
[11]
(11) Wriedt, M.; Sculley, J. P.; Yakovenko, A. A.; Ma, Y.; Halder, G. J.; Balbuena, P. B.; Zhou, H. C. Angew. Chem. Int. Edit. 2012, 124, 9942. doi: 10.1002/ange.v124.39
-
[12]
(12) An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38. doi: 10.1021/ja909169x
-
[13]
(13) Wang, B.; Côté, A, P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207. doi: 10.1038/nature06900
-
[14]
(14) Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. J. Am. Chem. Soc. 2009, 131, 16000. doi: 10.1021/ja907359t
-
[15]
(15) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O' Keeffe, Michael.; Yaghi, O. M. Science 2008, 319, 939. doi: 10.1126/science.1152516
-
[16]
(16) Presser, V.; McDonough, J.; Yeon, S. H.; tsi, Y. Energy Environ. Sci. 2011, 4, 3059. doi: 10.1039/c1ee01176f
-
[17]
(17) Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schüth, F.; Bongard, H. J.; Lu, A. H. J. Am. Chem. Soc. 2011, 133, 11378. doi: 10.1021/ja203857g
-
[18]
(18) Xia, Y.; Mokaya, R.; Walker, G. S.; Zhu, Y. Adv. Energy Mater. 2011, 1, 678. doi: 10.1002/aenm.201100061
-
[19]
(19) Peng, X.; Zhang, Q. X.; Cheng, X.; Cao, D. P. Acta Phys. -Chim. Sin. 2011, 27, 2065. [彭璇, 张勤学, 成璇, 曹达鹏. 物理化学学报, 2011, 27, 2065.] doi: 10.3866/PKU.WHXB20110919
-
[20]
(20) Hudson, M. R.; Queen, W. L.; Mason, J. A.; Fickel, D. W.; Lobo, R. F.; Brown, C. M. J. Am. Chem. Soc. 2012, 134, 1970. doi: 10.1021/ja210580b
-
[21]
(21) Kim, J.; Lin, L. C.; Swisher, J. A.; Haranczyk, M.; Smit, B. J. Am. Chem. Soc. 2012, 134, 18940. doi: 10.1021/ja309818u
-
[22]
(22) Pham, T. D.; Liu, Q.; Lobo, R. F. Langmuir 2013, 29, 832. doi: 10.1021/la304138z
-
[23]
(23) Zhao, H. M.; Lin, D.; Yang, G.; Chun, Y.; Xu, Q. H. Acta Phys. -Chim. Sin. 2012, 28, 985. [赵会民, 林丹, 杨刚, 淳远, 须沁华. 物理化学学报, 2012, 28, 985.] doi: 10.3866/PKU.WHXB 201202071
-
[24]
(24) An, X, H.; Liu, D. H.; Zhong, C. L. Acta Phys. -Chim. Sin. 2011, 27, 553. [安晓辉, 刘大欢, 仲崇立. 物理化学学报, 2011, 27, 553.] doi: 10.3866/PKU.WHXB20110319
-
[25]
(25) Hao, G. P.; Li, W. C.; Lu, A. H. J. Mater. Chem. 2011, 21, 6447. doi: 10.1039/c0jm03564e
-
[26]
(26) Volker, P.; John, M. D.; Sun-Hwa, Y.; Yury, G. Energy Environ. Sci. 2011, 4, 3059. doi: 10.1039/c1ee01176f
-
[27]
(27) Qian, D.; Lei, C.; Wang, E. M.; Li, W. C.; Lu, A. H. ChemSusChem 2014, 7, 291. doi: 10.1002/cssc.v7.1
-
[28]
(28) Qian, D.; Lei, C.; Hao, G. P.; Li, W. C.; Lu, A. H. ACS Appl. Mater. Interfaces 2012, 4, 6125. doi: 10.1021/am301772k
-
[29]
(29) Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853. doi: 10.1002/adma.v22:7
-
[30]
(30) Zhao, Y. F.; Zhao, L.; Yao, K. X.; Yang, Y.; Zhang, Q.; Han, Y. J. Mater. Chem. 2012, 22, 19726. doi: 10.1039/c2jm33091a
-
[31]
(31) Liu, L.; Deng, Q. F.; Ma, T. Y.; Lin, X. Z.; Hou, X. X.; Liu, Y. P.; Yuan, Z. Y. J. Mater. Chem. 2011, 21, 16001. doi: 10.1039/c1jm12887f
-
[32]
(32) Mangun, C. L.; Benak, K. R.; Econimy, J.; Foster, K. L. Carbon 2001, 39, 1809. doi: 10.1016/S0008-6223(00)00319-5
-
[33]
(33) Xia, Y.; Mokaya, R.; Walker, G. S.; Zhu, Y. Adv. Energy Mater. 2011, 1, 678. doi: 10.1002/aenm.201100061
-
[34]
(34) Wang, J. C.; Irena, S.; Martin, O.; Martin, R. L.; Lars, B.; Andreas, H.; Liu, Q.; Stefan, K. ACS Appl. Mater. Interfaces. 2013, 5, 3160. doi: 10.1021/am400059t
-
[35]
(35) Hu, J. X.; Zhang, J. Zou, ; J, F.; Xiao, Q.; Zhong, Y. J.; Zhu, W. D. Acta Phys. -Chim. Sin. 2014, 30, 1169. [胡敬秀, 张静, 邹建锋, 肖强, 钟依均, 朱伟东. 物理化学学报, 2014, 30, 1169.] doi: 10.3866/PKU.WHXB201404223
-
[36]
(36) Zhuang, X. D.; Zhang, F.; Wu, D. Q.; Feng, X. L. Adv. Mater. 2014, 26, 3081. doi: 10.1002/adma.201305040
-
[37]
(37) Zhao, D. Y.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. doi: 10.1126/science.279.5350.548
-
[38]
(38) Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Adv. Mater. 2010, 22, 853. doi: 10.1002/adma.v22:7
-
[39]
(39) Arri , R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGre r, J.; Parrott, E. P. J.; Zeitle, J. A.; Gladden, L. F.; Knop-Gericke, A.; Schlögl, R.; Su, D. S. J. Am. Chem. Soc. 2010, 132, 9616. doi: 10.1021/ja910169v
-
[40]
(40) Drage, T. C.; Arenillas, A.; Smith, K. M.; Pevida, C.; Piippo, S.; Snape, C. E. Fuel 2007, 86, 22. doi: 10.1016/j.fuel.2006.07.003
-
[41]
(41) Sirca, S.; lden, T. C.; Rao, M. B. Carbon 1996, 34, 1. doi: 10.1016/0008-6223(95)00128-X
-
[42]
(42) Sevilla, M.; Fuertes, A. B. J. Colloid Interface Sci. 2012, 366, 147. doi: 10.1016/j.jcis.2011.09.038
-
[43]
(43) Himeno, S.; Komatsu, T.; Fujita, S. J. Chem. Eng. Data 2005, 50, 369. doi: 10.1021/je049786x
-
[44]
(44) Vaidhyanathan, R.; Iremonger, S, S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K.; Science 2010, 330, 650. doi: 10.1126/science.1194237
-
[45]
(45) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939. doi: 10.1126/science.1152516
-
[46]
(46) Zhao, Y.; Yao, K. X.; Yang, Y.; Zhang, Q.; Han, Y. J. Mater. Chem. 2012, 22, 19726. doi: 10.1039/c2jm33091a
-
[47]
(47) Li, B.; Zhang, Z.; Li, Y.; Yao. K.; Zhu, Y.; Deng, Z.; Yang, F.; Zhou, X.; Li, G.; Wu, H.; Nijem, N.; Chabal, J.; Lai, Z.; Han, Y.; Shi, Z.; Feng, S.; Li, J. Angew. Chem. Int. Edit. 2012, 51, 1412. doi: 10.1002/anie.201105966
-
[48]
(48) Hu, C.; Li, Y.; Ma, X. J. Mater. Chem. A 2014, 2, 4819. doi: 10.1039/c3ta14684g
-
[49]
(49) Bae, Y. S.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.; Snurr, R. Q. Chem. Commun. 2008, 35, 4135.
-
[50]
(50) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. J. Chem. Eng. Data 2004, 49, 1095. doi: 10.1021/je0498917
-
[1]
-
-
[1]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[2]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
-
[5]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[6]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[7]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[8]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[9]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[10]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[11]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[12]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[13]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[14]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[17]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[18]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[19]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[20]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[1]
Metrics
- PDF Downloads(272)
- Abstract views(520)
- HTML views(4)