Citation: WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1437-1451. doi: 10.3866/PKU.WHXB201506162
-
In recent years, TiO2 has been widely investigated as a promising anode material for lithium ion batteries because of its low volume change during the charge/discharge process, environmental benignity, and high safety. However, it suffers from poor electron transport, slow ion diffusion, and low theoretical capacity (335 mAh·g-1), which limit its practical application. In this paper, we review the development history and latest progress of TiO2 nanotubes (TNTs) as anode materials. Three typical synthesis methods of TNTs, namely, hydrothermal method, anodic oxidation, and template method, are analyzed in detail. We explain the formation mechanism, compare the advantages and disadvantages of each method, and identify the factors influencing the formation of TNTs. We also carefully analyze the morphology and crystallography of TNTs and describe how they influence the electrochemical performance. It is pointed out that c-axis oriented, arrayed, unsealed TNTs with a wall thickness less than 5 nm show better electrochemical performance. Various approaches for improving the electrochemical performance of TNTs are summarized, including preparation of threedimensional (3D) structured electrodes, doping, coating, and synthesis of composites. Among these approaches, compositing with materials that have high capacity and high conductivity has proven to be effective, convenient, and controllable. The achievements and the problems associated with each approach are summarized, and the possible research directions and prospects of TNTs as anode materials for Li-ion batteries in the future are discussed.
-
-
[1]
(1) Scrosati, B. Nature 1995, 373 (6515), 557. doi: 10.1038/373557a0
-
[2]
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644
-
[3]
(3) Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Adv. Mater. 2006, 18 (21), 2807.
-
[4]
(4) Ortiz, G. F.; Hanzu, I.; Djenizian, T.; Lavela, P.; Tirado, J. L.; Knauth, P. Chem. Mater. 2009, 21 (1), 63. doi: 10.1021/cm801670u
-
[5]
(5) Djenizian, T.; Hanzu, I.; Knauth, P. J. Mater. Chem. 2011, 21 (27), 9925. doi: 10.1039/c0jm04205f
-
[6]
(6) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368
-
[7]
(7) Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. Adv. Mater. 2005, 17 (7), 862.
-
[8]
(8) Gentili, V.; Brutti, S.; Hardwick, L. J.; Armstrong, A. R.; Panero, S.; Bruce, P. G. Chem. Mater. 2012, 24 (22), 4468. doi: 10.1021/cm302912f
-
[9]
(9) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14 (12), 3160. doi: 10.1021/la9713816
-
[10]
(10) Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M. Acta Crystallographica Section B-Structural Science 2002, 58, 587. doi: 10.1107/S0108768102009084
-
[11]
(11) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. RSC Advances 2013, 3 (31), 12593. doi: 10.1039/c3ra42413h
-
[12]
(12) Kim, H. S.; Yu, S. H.; Sung, Y. E.; Kang, S. H. J. Alloy. Compd. 2014, 597, 275. doi: 10.1016/j.jallcom.2014.02.013
-
[13]
(13) Xu, X.; Fan, Z.; Ding, S.; Yu, D.; Du, Y. Nanoscale 2014, 6 (10), 5245. doi: 10.1039/c3nr06736j
-
[14]
(14) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C. J. Mater. Chem. 2004, 14 (22), 3370. doi: 10.1039/b406378c
-
[15]
(15) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11 (15), 1307.
-
[16]
(16) Choi, M. G.; Lee, Y. G.; Song, S. W.; Kim, K. M. Electrochim. Acta 2010, 55 (20), 5975. doi: 10.1016/j.electacta. 2010.05.052
-
[17]
(17) Gajovic, A.; Friscic, I.; Plodinec, M.; Ivekovic, D. J. Mol. Struct. 2009, 924-926, 183.
-
[18]
(18) Morgan, D. L.; Triani, G.; Blackford, M. G.; Raftery, N. A.; Frost, R. L.; Waclawik, E. R. J. Mater. Sci. 2011, 46 (2), 548. doi: 10.1007/s10853-010-5016-0
-
[19]
(19) Zhang, Q. H.; Gao, L.; Zheng, S.; Sun, J. Acta Chim. Sin. 2002, 60 (8), 1439. [张青红, 高濂, 郑珊, 孙静. 化学学报, 2002, 60 (8), 1439]
-
[20]
(20) Seo, H. K.; Kim, G. S.; Ansari, S. G.; Kim, Y. S.; Shin, H. S.; Shim, K. H.; Suh, E. K. Sol. Energy Mater. Sol. Cells 2008, 92 (11), 1533. doi: 10.1016/j.solmat.2008.06.019
-
[21]
(21) Suzuki, Y.; Pavasupree, S.; Yoshikawa, S.; Kawahata, R. J. Mater. Res. 2005, 20 (4), 1063. doi: 10.1557/JMR. 2005.0135
-
[22]
(22) Ma, R. Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y. J. Phys. Chem. B 2005, 109 (13), 6210. doi: 10.1021/jp044282r
-
[23]
(23) Yuan, Z. Y.; Su, B. L. Colloids and Surfaces A-Physicochemical and Engineering Aspects 2004, 241 (1-3), 173. doi: 10.1016/j.colsurfa.2004.04.030
-
[24]
(24) Sun, X. M.; Li, Y. D. Chemistry-A European Journal 2003, 9 (10), 2229. doi: 10.1002/chem.200204394
-
[25]
(25) Ma, R. Z.; Bando, Y.; Sasaki, T. Chem. Phys. Lett. 2003, 380 (5-6), 577. doi: 10.1016/j.cplett.2003.09.069
-
[26]
(26) Tsai, C. C.; Nian, J. N.; Teng, H. S. Appl. Surf. Sci. 2006, 253 (4), 1898. doi: 10.1016/j.apsusc.2006.03.035
-
[27]
(27) Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M. Appl. Phys. Lett. 2001, 79 (22), 3702. doi: 10.1063/1.1423403
-
[28]
(28) Wang, W. Z.; Varghese, O. K.; Paulose, M.; Grimes, C. A.; Wang, Q. L.; Dickey, E. C. J. Mater. Res. 2004, 19 (2), 417. doi: 10.1557/jmr.2004.19.2.417
-
[29]
(29) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N. Appl. Phys. Lett. 2003, 82 (2), 281. doi: 10.1063/1.1537518
-
[30]
(30) Menzel, R.; Peiro, A. M.; Durrant, J. R.; Shaffer, M. S. P. Chem. Mater. 2006, 18 (25), 6059. doi: 10.1021/cm061721l
-
[31]
(31) Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araujo, A. S. Solid State Sci. 2006, 8 (8), 888. doi: 10.1016/j.solidstatesciences.2006.02.039
-
[32]
(32) Kukovecz, A.; Hodos, N.; Horvath, E.; Radnoczi, G.; Konya, Z.; Kiricsi, I. J. Phys. Chem. B 2005, 109 (38), 17781. doi: 10.1021/jp054320m
-
[33]
(33) Nosheen, S.; Galasso, F. S.; Suib, S. L. Langmuir 2009, 25 (13), 7623. doi: 10.1021/la9002719
-
[34]
(34) Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J. Dalton Trans. 2003, No. 20, 3898.
-
[35]
(35) Gao, T.; Fjellvag, H.; Norby, P. Inorg. Chem. 2009, 48 (4), 1423. doi: 10.1021/ic801508k
-
[36]
(36) Liu, N.; Chen, X.; Zhang, J.; Schwank, J. W. Catal. Today 2014, 225 (0), 34.
-
[37]
(37) Lai, Y. K.; Sun, L.; Zun, J.; Lin, C. J. Acta Phys. -Chim. Sin. 2004, 20, 1063. [赖跃坤, 孙岚, 左娟, 林昌健. 物理化学学报, 2004, 20, 1063.] doi: 10.3866/PKU.WHXB 20040901
-
[38]
(38) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Angew. Chem. Int. Edit. 2005, 44 (45), 7463.
-
[39]
(39) Pervez, S.; Kim, D.; Doh, C. H.; Farooq, U.; Yaqub, A.; Choi, J. H.; Lee, Y. J.; Saleem, M. Mater. Lett. 2014, 137, 347. doi: 10.1016/j.matlet.2014.09.032
-
[40]
(40) John, S. E.; Mohapatra, S. K.; Misra, M. Langmuir 2009, 25 (14), 8240. doi: 10.1021/la900426j
-
[41]
(41) Li, H.; Martha, S. K.; Unocic, R. R.; Luo, H.; Dai, S.; Qu, J. J. Power Sources 2012, 218, 88. doi: 10.1016/j.jpowsour. 2012.06.096
-
[42]
(42) Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Chem. Mater. 1997, 9 (3), 857. doi: 10.1021/cm9605577
-
[43]
(43) Sudant, G.; Baudrin, E.; Larcher, D.; Tarascon, J. M. J. Mater. Chem. 2005, 15 (12), 1263.
-
[44]
(44) Kavan, L.; Grätzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. J. Am. Chem. Soc. 1996, 118 (28), 6716. doi: 10.1021/ja954172l
-
[45]
(45) Exnar, I.; Kavan, L.; Huang, S. Y.; Grätzel, M. J. Power Sources 1997, 68 (2), 720. doi: 10.1016/S0378-7753(96) 02581-5
-
[46]
(46) Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. J. Phys. Chem. B 1997, 101 (39), 7717. doi: 10.1021/jp970490q
-
[47]
(47) Borghols, W. J. H.; Lutzenkirchen-Hecht, D.; Haake, U.; van Eck, E. R. H.; Mulder, F. M.; Wagemaker, M. Phys. Chem. Chem. Phys. 2009, 11 (27), 5742. doi: 10.1039/b823142g
-
[48]
(48) Lafont, U.; Carta, D.; Mountjoy, G.; Chadwick, A. V.; Kelder, E. M. J. Phys. Chem. C 2010, 114 (2), 1372. doi: 10.1021/jp908786t
-
[49]
(49) Wagemaker, M.; Kentgens, A. P. M.; Mulder, F. M. Nature 2002, 418 (6896), 397. doi: 10.1038/nature00901
-
[50]
(50) Wagemaker, M.; Borghols, W. J. H.; van Eck, E. R. H.; Kentgens, A. P. M.; Kearley, G. L.; Mulder, F. M. Chemistry-A European Journal 2007, 13 (7), 2023.
-
[51]
(51) Macklin, W. J.; Neat, R. J. Solid State Ionics 1992, 53, 694.
-
[52]
(52) Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. Adv. Mater. 2006, 18 (11), 1421.
-
[53]
(53) Reddy, M. A.; Kishore, M. S.; Pralong, V.; Caignaert, V.; Varadaraju, U. V.; Raveau, B. Electrochem. Commun. 2006, 8 (8), 1299. doi: 10.1016/j.elecom.2006.05.021
-
[54]
(54) Marinaro, M.; Pfanzelt, M.; Kubiak, P.; Marassi, R.; Wohlfahrt-Mehrens, M. J. Power Sources 2011, 196 (22), 9825. doi: 10.1016/j.jpowsour.2011.07.008
-
[55]
(55) Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Gräetzel, M. Chem. Mater. 2005, 17 (5), 1248. doi: 10.1021/cm048249t
-
[56]
(56) Ryu, W. H.; Nam, D. H.; Ko, Y. S.; Kim, R. H.; Kwon, H. S. Electrochim. Acta 2012, 61, 19. doi: 10.1016/j.electacta. 2011.11.042
-
[57]
(57) Fang, H. T.; Liu, M.; Wang, D. W.; Sun, T.; Guan, D. S.; Li, F.; Zhou, J. G.; Sham, T. K.; Cheng, H. M. Nanotechnology 2009, 20 (22). 266.
-
[58]
(58) Kim, J.; Cho, J. J. Electrochem. Soc. 2007, 154 (6), A542.
-
[59]
(59) Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W. Phys. Rev. Lett. 2001, 86 (7), 1275. doi: 10.1103/PhysRevLett. 86.1275
-
[60]
(60) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453 (7195), 638. doi: 10.1038/nature06964
-
[61]
(61) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. J. Am. Chem. Soc. 2010, 132 (17), 6124. doi: 10.1021/ja100102y
-
[62]
(62) Pan, D.; Huang, H.; Wang, X.; Wang, L.; Liao, H.; Li, Z.; Wu, M. Journal of Materials Chemistry A 2014, 2 (29), 11454. doi: http://dx.doi.org/10.1039/c4ta01613k
-
[63]
(63) Yan, J. Y.; Song, H. H.; Yang, S. B.; Chen, X. H. Mater. Chem. Phys. 2009, 118 (2-3), 367. doi: 10.1016/j.matchemphys. 2009.08.007
-
[64]
(64) Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P. Adv. Mater. 2008, 20 (21), 4135.
-
[65]
(65) Lamberti, A.; Garino, N.; Sacco, A.; Bianco, S.; Manfredi, D.; Gerbaldi, C. Electrochim. Acta 2013, 102 (0), 233.
-
[66]
(66) Lamberti, A.; Garino, N.; Sacco, A.; Bianco, S.; Chiodoni, A.; Gerbaldi, C. Electrochim. Acta 2015, 151, 222. doi: 10.1016/j.electacta.2014.10.150
-
[67]
(67) Guan, D. S.; Cai, C. A.; Wang, Y. J. Nanosci. Nanotechnol. 2011, 11 (4), 3641. doi: 10.1166/jnn.2011.3765
-
[68]
(68) Panda, S. K.; Yoon, Y.; Jung, H. S.; Yoon, W. S.; Shin, H. J. Power Sources 2012, 204, 162. doi: 10.1016/j.jpowsour. 2011.12.048
-
[69]
(69) nzalez, J. R.; Alcantara, R.; Nacimiento, F.; Ortiz, G. F.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R. J. Phys. Chem. C 2012, 116 (38), 20182. doi: 10.1021/jp3050115
-
[70]
(70) Freitas, R. G.; Justo, S. G.; Pereira, E. C. J. Power Sources 2013, 243, 569. doi: 10.1016/j.jpowsour.2013.06.044
-
[71]
(71) Han, H.; Song, T.; Lee, E. K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y. C.; Choi, Y. M.; Jung, Y. G.; Paik, U. ACS Nano 2012, 6 (9), 8308. doi: 10.1021/nn303002u
-
[72]
(72) Beguin, F.; Chevallier, F.; Vix, C.; Saadallah, S.; Rouzaud, J. N.; Frackowiak, E. J. Phys. Chem. Solids 2004, 65 (2-3), 211. doi: 10.1016/j.jpcs.2003.10.050
-
[73]
(73) Li, H.; Shi, L. H.; Lu, W.; Huang, X. J.; Chen, L. Q. J. Electrochem. Soc. 2001, 148 (8), A915.
-
[74]
(74) Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P. Electrochim. Acta 1999, 45 (7), 1135. doi: 10.1016/S0013-4686(99)00312-6
-
[75]
(75) Aurbach, D. Electrochim. Acta 1999, 45 (1-2), 1. doi: 10.1016/S0013-4686(99)00188-7
-
[76]
(76) Verma, P.; Maire, P.; Novak, P. Electrochim. Acta 2010, 55 (22), 6332. doi: 10.1016/j.electacta.2010.05.072
-
[77]
(77) Kawamura, T.; Okada, S.; Yamaki, J. J. Power Sources 2006, 156 (2), 547. doi: 10.1016/j.jpowsour.2005.05.084
-
[78]
(78) Brutti, S.; Gentili, V.; Menard, H.; Scrosati, B.; Bruce, P. G. Adv. Energy Mater. 2012, 2 (3), 322. doi: 10.1002/aenm. 201100492
-
[79]
(79) Morterra, C. Journal of the Chemical Society-Faraday Transactions I 1988, 84, 1617. doi: 10.1039/f19888401617
-
[80]
(80) Li, C.; Zhang, H. P.; Fu, L. J.; Liu, H.; Wu, Y. P.; Ram, E.; Holze, R.; Wu, H. Q. Electrochim. Acta 2006, 51 (19), 3872. doi: 10.1016/j.electacta.2005.11.015
-
[81]
(81) Kim, M. G.; Kim, H.; Cho, J. J. Electrochem. Soc. 2010, 157 (7), A802.
-
[82]
(82) Bi, Z.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M.; Guo, B.; Sun, X. G.; Dai, S. J. Power Sources 2013, 222, 461. doi: 10.1016/j.jpowsour. 2012.09.019
-
[83]
(83) Zhang, Z. J.; Zeng, Q. Y.; Chou, S. L.; Li, X. J.; Li, H. J.; Ozawa, K.; Liu, H. K.; Wang, J. Z. Electrochim. Acta 2014, 133, 570. doi: 10.1016/j.electacta.2014.04.049
-
[84]
(84) Zhao, B.; Jiang, S.; Su, C.; Cai, R.; Ran, R.; Tade, M. O.; Shao, Z. Journal of Materials Chemistry A 2013, 1 (39), 12310. doi: 10.1039/c3ta12770b
-
[85]
(85) Chen, J.; Yang, L.; Tang, Y. J. Power Sources 2010, 195 (19), 6893. doi: 10.1016/j.jpowsour.2010.04.005
-
[86]
(86) Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W. I.; Kim, S.; Liu, L.; Paik, U. Nano Research 2014, 7 (4), 491. doi: 10.1007/s12274-014-0415-1
-
[87]
(87) Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Nano Lett. 2012, 12 (3), 1690. doi: 10.1021/nl300173j
-
[88]
(88) Wu, H.; Xu, C.; Xu, J.; Lu, L.; Fan, Z.; Chen, X.; Song, Y.; Li, D. Nanotechnology 2013, 24 (45).
-
[89]
(89) Salari, M.; Konstantinov, K.; Liu, H. K. J. Mater. Chem. 2011, 21 (13), 5128. doi: 10.1039/c0jm04085a
-
[90]
(90) Guo, W.; Xue, X.; Wang, S.; Lin, C.; Wang, Z. L. Nano Lett. 2012, 12 (5), 2520. doi: 10.1021/nl3007159
-
[91]
(91) Li, Z.; Ding, Y.; Kang, W.; Li, C.; Lin, D.; Wang, X.; Chen, Z.; Wu, M.; Pan, D. Electrochim. Acta 2015, 161, 40.
-
[92]
(92) Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134 (8), 3659. doi: 10.1021/ja211369s
-
[93]
(93) Zhang, J.; Zhang, J.; Ren, H.; Yu, L.; Wu, Z.; Zhang, Z. J. Alloy. Compd. 2014, 609, 178. doi: 10.1016/j.jallcom. 2014.04.115
-
[94]
(94) Li, Y.; Wang, Z.; Lv, X. J. Journal of Materials Chemistry A 2014, 2 (37), 15473. doi: 10.1039/C4TA02890B
-
[95]
(95) Xu, J.; Wang, Y.; Li, Z.; Zhang, W. J. Power Sources 2008, 175 (2), 903. doi: 10.1016/j.jpowsour.2007.10.014
-
[96]
(96) Kyeremateng, N. A.; Vacandio, F.; Sougrati, M. T.; Martinez, H.; Jumas, J. C.; Knauth, P.; Djenizian, T. J. Power Sources 2013, 224, 269. doi: 10.1016/j.jpowsour.2012.09.104
-
[97]
(97) Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. J. Power Sources 2011, 196 (16), 6815. doi: 10.1016/j.jpowsour.2010.09.109
-
[98]
(98) Fan, J.; Zhao, Z.; Wang, J.; Zhu, L. Appl. Surf. Sci. 2015, 324 (0), 691.
-
[99]
(99) Cheng, Z. W.; Feng, L.; Chen, J. M.; Yu, J. M.; Jiang, Y. F. J. Hazard. Mater. 2013, 254, 354.
-
[100]
(100) Liu, H. J.; Liu, G. G.; Zhou, Q. X.; Xie, G. H.; Hou, Z. H.; Zhang, M. L.; He, Z. W. Microporous Mesoporous Mat. 2011, 142 (2-3), 439. doi: 10.1016/j.micromeso.2010.11.035
-
[101]
(101) Fan, X.; Wan, J.; Liu, E.; Sun, L.; Hu, Y.; Li, H.; Hu, X.; Fan, J. Ceram. Int. 2015, 41 (3, Part B), 5107. doi: 10.1016/j.ceramint.2014.12.083
-
[102]
(102) Fan, X.; Fan, J.; Hu, X.; Liu, E.; Kang, L.; Tang, C.; Ma, Y.; Wu, H.; Li, Y. Ceram. Int. 2014, 40 (10), 15907. doi: 10.1016/j.ceramint.2014.07.119
-
[103]
(103) Li, Y.; Wang, Y.; Kong, J.; Wang, J. Appl. Surf. Sci. 2015, 328 (0), 115.
-
[104]
(104) Han, W. Q.; Wen, W.; Yi, D.; Liu, Z.; Maye, M. M.; Lewis, L.; Hanson, J.; Gang, O. J. Phys. Chem. C 2007, 111 (39), 14339. doi: 10.1021/jp074381f
-
[105]
(105) Yu, Y.; Wu, H. H.; Zhu, B. L.; Wang, S. R.; Huang, W. P.; Wu, S. H.; Zhang, S. M. Catal. Lett. 2008, 121 (1-2), 165. doi: 10.1007/s10562-007-9316-1
-
[106]
(106) Umek, P.; Pregelj, M.; Gloter, A.; Cevc, P.; Jaglicic, Z.; Ceh, M.; Pirnat, U.; Arcon, D. J. Phys. Chem. C 2008, 112 (39), 15311. doi: 10.1021/jp805005k
-
[107]
(107) Meksi, M.; Berhault, G.; Guillard, C.; Kochkar, H. Catal. Commun. 2015, 61, 107. doi: 10.1016/j.catcom.2014.12.020
-
[108]
(108) Kim, D. H.; Jang, J. S.; o, N. H.; Kwon, M. S.; Lee, J. W.; Choi, S. H.; Shin, D. W.; Kim, S. J.; Lee, K. S. Catal. Today 2009, 146 (1-2), 230. doi: 10.1016/j.cattod.2009.04.007
-
[109]
(109) Szirmai, P.; Horvath, E.; Nafradi, B.; Mickovic, Z.; Smajda, R.; Djokic, D. M.; Schenk, K.; Forro, L.; Magrez, A. J. Phys. Chem. C 2013, 117 (1), 697. doi: 10.1021/jp3104722
-
[110]
(110) Long, L. Z.; Wu, L. P.; Yang, X.; Li, X. J. Journal of Materials Science & Technology 2014, 30 (8), 765. doi: 10.1016/j.jmst. 2014.03.010
-
[111]
(111) Kim, H. S.; Kang, S. H.; Chung, Y. H.; Sung, Y. E. Electrochem. Solid State Lett. 2010, 13 (2), A15.
-
[112]
(112) Ivanov, S.; Grieseler, R.; Cheng, L.; Schaaf, P.; Bund, A. J. Electroanal. Chem. 2014, 731, 6. doi: 10.1016/j.jelechem. 2014.07.038
-
[113]
(113) Brumbarov, J.; Kunze-Liebhaeuser, J. J. Power Sources 2014, 258, 129. doi: 10.1016/j.jpowsour.2014.02.049
-
[114]
(114) Guan, D.; Li, J.; Gao, X.; Yuan, C. J. Power Sources 2014, 246, 305. doi: 10.1016/j.jpowsour.2013.07.096
-
[115]
(115) Fan, Y.; Zhang, N.; Zhang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. Electrochim. Acta 2013, 94, 285. doi: 10.1016/j.electacta.2013.01.114
-
[116]
(116) Kulova, T. L.; Skundin, A. M.; Pleskov, Y. V.; Terukov, E. I.; Kon'kov, O. I. J. Electroanal. Chem. 2007, 600 (1), 217. doi: 10.1016/j.jelechem.2006.07.002
-
[117]
(117) Wu, X. M.; Zhang, S. C.; Wang, L. L.; Du, Z. J.; Fang, H.; Ling, Y. H.; Huang, Z. H. J. Mater. Chem. 2012, 22 (22), 11151. doi: 10.1039/c2jm30885a
-
[118]
(118) Jeun, J. H.; Park, K. Y.; Kim, D. H.; Kim, W. S.; Kim, H. C.; Lee, B. S.; Kim, H.; Yu, W. R.; Kang, K.; Hong, S. H. Nanoscale 2013, 5 (18), 8480. doi: 10.1039/c3nr01964k
-
[119]
(119) Fan, Y.; Zhang, N.; Zhang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. Electrochim. Acta 2013, 94 (0), 285.
-
[120]
(120) Kang, K. Y.; Lee, Y. G.; Kim, S.; Seo, S. R.; Kim, J. C.; Kim, K. M. Mater. Chem. Phys. 2012, 137 (1), 169. doi: 10.1016/j.matchemphys.2012.09.001
-
[121]
(121) Park, S. J.; Kim, Y. J.; Lee, H. J. Power Sources 2011, 196 (11), 5133. doi: 10.1016/j.jpowsour.2011.01.105
-
[122]
(122) Bresser, D.; Oschmann, B.; Tahir, M. N.; Mueller, F.; Lieberwirth, I.; Tremel, W.; Zentel, R.; Passerini, S. J. Electrochem. Soc. 2015, 162 (2), A3013.
-
[123]
(123) Plylahan, N.; Letiche, M.; Samy Barr, M. K.; Ellis, B.; Maria, S.; Phan, T. N. T.; Bloch, E.; Knauth, P.; Djenizian, T. J. Power Sources 2015, 273, 1182.
-
[124]
(124) He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9 (3), 425. doi: 10.1016/j.elecom.2006.10.008
-
[125]
(125) Fang, D.; Huang, K. L.; Liu, S. Q.; Li, Z. J. J. Alloy. Compd. 2008, 464 (1-2), L5.
-
[126]
(126) Kim, H.; Kim, M. G.; Shin, T. J.; Shin, H. J.; Cho, J. Electrochem. Commun. 2008, 10 (11), 1669. doi: 10.1016/j.elecom.2008.08.035
-
[127]
(127) Kang, K. Y.; Shin, D. O.; Lee, Y. G.; Kim, S.; Kim, K. M. Journal of Electroceramics 2014, 32 (2-3), 246. doi: 10.1007/s10832-013-9882-0
-
[128]
(128) Wang, J.; Zhou, Y. K.; Xiong, B.; Zhao, Y. Y.; Huang, X. J.; Shao, Z. P. Electrochim. Acta 2013, 88, 847. doi: 10.1016/j.electacta.2012.10.010
-
[129]
(129) Tang, Y.; Liu, Z.; Lu, X.; Wang, B.; Huang, F. RSC Advances 2014, 4 (68), 36372. doi: 10.1039/C4RA05027D
-
[130]
(130) Zhu, C.; Xia, X.; Liu, J.; Fan, Z.; Chao, D.; Zhang, H.; Fan, H. J. Nano Energy 2014, 4, 105.
-
[131]
(131) Ortiz, G. F.; Hanzu, I.; Lavela, P.; Tirado, J. L.; Knauth, P.; Djenizian, T. J. Mater. Chem. 2010, 20 (20), 4041. doi: 10.1039/b927122h
-
[132]
(132) Kim, K. M.; Kang, K. Y.; Kim, S.; Lee, Y. G. Current Applied Physics 2012, 12 (4), 1199. doi: 10.1016/j.cap. 2012.02.059
-
[1]
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[6]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[7]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[8]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[9]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[10]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[11]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[12]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[13]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[14]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[15]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[16]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[17]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[18]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[19]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[20]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[1]
Metrics
- PDF Downloads(622)
- Abstract views(780)
- HTML views(16)