Citation: WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1437-1451. doi: 10.3866/PKU.WHXB201506162 shu

TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries

  • Received Date: 20 April 2015
    Available Online: 16 June 2015

    Fund Project: 陕西省自然科学基金项目(2014JM6231) (2014JM6231) 教育部留学回国人员启动基金项目及中央高校基本科研业务费专项资金(XJJ2012076)资助 (XJJ2012076)

  • In recent years, TiO2 has been widely investigated as a promising anode material for lithium ion batteries because of its low volume change during the charge/discharge process, environmental benignity, and high safety. However, it suffers from poor electron transport, slow ion diffusion, and low theoretical capacity (335 mAh·g-1), which limit its practical application. In this paper, we review the development history and latest progress of TiO2 nanotubes (TNTs) as anode materials. Three typical synthesis methods of TNTs, namely, hydrothermal method, anodic oxidation, and template method, are analyzed in detail. We explain the formation mechanism, compare the advantages and disadvantages of each method, and identify the factors influencing the formation of TNTs. We also carefully analyze the morphology and crystallography of TNTs and describe how they influence the electrochemical performance. It is pointed out that c-axis oriented, arrayed, unsealed TNTs with a wall thickness less than 5 nm show better electrochemical performance. Various approaches for improving the electrochemical performance of TNTs are summarized, including preparation of threedimensional (3D) structured electrodes, doping, coating, and synthesis of composites. Among these approaches, compositing with materials that have high capacity and high conductivity has proven to be effective, convenient, and controllable. The achievements and the problems associated with each approach are summarized, and the possible research directions and prospects of TNTs as anode materials for Li-ion batteries in the future are discussed.

  • 加载中
    1. [1]

      (1) Scrosati, B. Nature 1995, 373 (6515), 557. doi: 10.1038/373557a0

    2. [2]

      (2) Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644

    3. [3]

      (3) Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Adv. Mater. 2006, 18 (21), 2807.

    4. [4]

      (4) Ortiz, G. F.; Hanzu, I.; Djenizian, T.; Lavela, P.; Tirado, J. L.; Knauth, P. Chem. Mater. 2009, 21 (1), 63. doi: 10.1021/cm801670u

    5. [5]

      (5) Djenizian, T.; Hanzu, I.; Knauth, P. J. Mater. Chem. 2011, 21 (27), 9925. doi: 10.1039/c0jm04205f

    6. [6]

      (6) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368

    7. [7]

      (7) Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. Adv. Mater. 2005, 17 (7), 862.

    8. [8]

      (8) Gentili, V.; Brutti, S.; Hardwick, L. J.; Armstrong, A. R.; Panero, S.; Bruce, P. G. Chem. Mater. 2012, 24 (22), 4468. doi: 10.1021/cm302912f

    9. [9]

      (9) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14 (12), 3160. doi: 10.1021/la9713816

    10. [10]

      (10) Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M. Acta Crystallographica Section B-Structural Science 2002, 58, 587. doi: 10.1107/S0108768102009084

    11. [11]

      (11) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. RSC Advances 2013, 3 (31), 12593. doi: 10.1039/c3ra42413h

    12. [12]

      (12) Kim, H. S.; Yu, S. H.; Sung, Y. E.; Kang, S. H. J. Alloy. Compd. 2014, 597, 275. doi: 10.1016/j.jallcom.2014.02.013

    13. [13]

      (13) Xu, X.; Fan, Z.; Ding, S.; Yu, D.; Du, Y. Nanoscale 2014, 6 (10), 5245. doi: 10.1039/c3nr06736j

    14. [14]

      (14) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C. J. Mater. Chem. 2004, 14 (22), 3370. doi: 10.1039/b406378c

    15. [15]

      (15) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11 (15), 1307.

    16. [16]

      (16) Choi, M. G.; Lee, Y. G.; Song, S. W.; Kim, K. M. Electrochim. Acta 2010, 55 (20), 5975. doi: 10.1016/j.electacta. 2010.05.052

    17. [17]

      (17) Gajovic, A.; Friscic, I.; Plodinec, M.; Ivekovic, D. J. Mol. Struct. 2009, 924-926, 183.

    18. [18]

      (18) Morgan, D. L.; Triani, G.; Blackford, M. G.; Raftery, N. A.; Frost, R. L.; Waclawik, E. R. J. Mater. Sci. 2011, 46 (2), 548. doi: 10.1007/s10853-010-5016-0

    19. [19]

      (19) Zhang, Q. H.; Gao, L.; Zheng, S.; Sun, J. Acta Chim. Sin. 2002, 60 (8), 1439. [张青红, 高濂, 郑珊, 孙静. 化学学报, 2002, 60 (8), 1439]

    20. [20]

      (20) Seo, H. K.; Kim, G. S.; Ansari, S. G.; Kim, Y. S.; Shin, H. S.; Shim, K. H.; Suh, E. K. Sol. Energy Mater. Sol. Cells 2008, 92 (11), 1533. doi: 10.1016/j.solmat.2008.06.019

    21. [21]

      (21) Suzuki, Y.; Pavasupree, S.; Yoshikawa, S.; Kawahata, R. J. Mater. Res. 2005, 20 (4), 1063. doi: 10.1557/JMR. 2005.0135

    22. [22]

      (22) Ma, R. Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y. J. Phys. Chem. B 2005, 109 (13), 6210. doi: 10.1021/jp044282r

    23. [23]

      (23) Yuan, Z. Y.; Su, B. L. Colloids and Surfaces A-Physicochemical and Engineering Aspects 2004, 241 (1-3), 173. doi: 10.1016/j.colsurfa.2004.04.030

    24. [24]

      (24) Sun, X. M.; Li, Y. D. Chemistry-A European Journal 2003, 9 (10), 2229. doi: 10.1002/chem.200204394

    25. [25]

      (25) Ma, R. Z.; Bando, Y.; Sasaki, T. Chem. Phys. Lett. 2003, 380 (5-6), 577. doi: 10.1016/j.cplett.2003.09.069

    26. [26]

      (26) Tsai, C. C.; Nian, J. N.; Teng, H. S. Appl. Surf. Sci. 2006, 253 (4), 1898. doi: 10.1016/j.apsusc.2006.03.035

    27. [27]

      (27) Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M. Appl. Phys. Lett. 2001, 79 (22), 3702. doi: 10.1063/1.1423403

    28. [28]

      (28) Wang, W. Z.; Varghese, O. K.; Paulose, M.; Grimes, C. A.; Wang, Q. L.; Dickey, E. C. J. Mater. Res. 2004, 19 (2), 417. doi: 10.1557/jmr.2004.19.2.417

    29. [29]

      (29) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N. Appl. Phys. Lett. 2003, 82 (2), 281. doi: 10.1063/1.1537518

    30. [30]

      (30) Menzel, R.; Peiro, A. M.; Durrant, J. R.; Shaffer, M. S. P. Chem. Mater. 2006, 18 (25), 6059. doi: 10.1021/cm061721l

    31. [31]

      (31) Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araujo, A. S. Solid State Sci. 2006, 8 (8), 888. doi: 10.1016/j.solidstatesciences.2006.02.039

    32. [32]

      (32) Kukovecz, A.; Hodos, N.; Horvath, E.; Radnoczi, G.; Konya, Z.; Kiricsi, I. J. Phys. Chem. B 2005, 109 (38), 17781. doi: 10.1021/jp054320m

    33. [33]

      (33) Nosheen, S.; Galasso, F. S.; Suib, S. L. Langmuir 2009, 25 (13), 7623. doi: 10.1021/la9002719

    34. [34]

      (34) Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J. Dalton Trans. 2003, No. 20, 3898.

    35. [35]

      (35) Gao, T.; Fjellvag, H.; Norby, P. Inorg. Chem. 2009, 48 (4), 1423. doi: 10.1021/ic801508k

    36. [36]

      (36) Liu, N.; Chen, X.; Zhang, J.; Schwank, J. W. Catal. Today 2014, 225 (0), 34.

    37. [37]

      (37) Lai, Y. K.; Sun, L.; Zun, J.; Lin, C. J. Acta Phys. -Chim. Sin. 2004, 20, 1063. [赖跃坤, 孙岚, 左娟, 林昌健. 物理化学学报, 2004, 20, 1063.] doi: 10.3866/PKU.WHXB 20040901

    38. [38]

      (38) Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Angew. Chem. Int. Edit. 2005, 44 (45), 7463.

    39. [39]

      (39) Pervez, S.; Kim, D.; Doh, C. H.; Farooq, U.; Yaqub, A.; Choi, J. H.; Lee, Y. J.; Saleem, M. Mater. Lett. 2014, 137, 347. doi: 10.1016/j.matlet.2014.09.032

    40. [40]

      (40) John, S. E.; Mohapatra, S. K.; Misra, M. Langmuir 2009, 25 (14), 8240. doi: 10.1021/la900426j

    41. [41]

      (41) Li, H.; Martha, S. K.; Unocic, R. R.; Luo, H.; Dai, S.; Qu, J. J. Power Sources 2012, 218, 88. doi: 10.1016/j.jpowsour. 2012.06.096

    42. [42]

      (42) Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Chem. Mater. 1997, 9 (3), 857. doi: 10.1021/cm9605577

    43. [43]

      (43) Sudant, G.; Baudrin, E.; Larcher, D.; Tarascon, J. M. J. Mater. Chem. 2005, 15 (12), 1263.

    44. [44]

      (44) Kavan, L.; Grätzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. J. Am. Chem. Soc. 1996, 118 (28), 6716. doi: 10.1021/ja954172l

    45. [45]

      (45) Exnar, I.; Kavan, L.; Huang, S. Y.; Grätzel, M. J. Power Sources 1997, 68 (2), 720. doi: 10.1016/S0378-7753(96) 02581-5

    46. [46]

      (46) Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. J. Phys. Chem. B 1997, 101 (39), 7717. doi: 10.1021/jp970490q

    47. [47]

      (47) Borghols, W. J. H.; Lutzenkirchen-Hecht, D.; Haake, U.; van Eck, E. R. H.; Mulder, F. M.; Wagemaker, M. Phys. Chem. Chem. Phys. 2009, 11 (27), 5742. doi: 10.1039/b823142g

    48. [48]

      (48) Lafont, U.; Carta, D.; Mountjoy, G.; Chadwick, A. V.; Kelder, E. M. J. Phys. Chem. C 2010, 114 (2), 1372. doi: 10.1021/jp908786t

    49. [49]

      (49) Wagemaker, M.; Kentgens, A. P. M.; Mulder, F. M. Nature 2002, 418 (6896), 397. doi: 10.1038/nature00901

    50. [50]

      (50) Wagemaker, M.; Borghols, W. J. H.; van Eck, E. R. H.; Kentgens, A. P. M.; Kearley, G. L.; Mulder, F. M. Chemistry-A European Journal 2007, 13 (7), 2023.

    51. [51]

      (51) Macklin, W. J.; Neat, R. J. Solid State Ionics 1992, 53, 694.

    52. [52]

      (52) Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. Adv. Mater. 2006, 18 (11), 1421.

    53. [53]

      (53) Reddy, M. A.; Kishore, M. S.; Pralong, V.; Caignaert, V.; Varadaraju, U. V.; Raveau, B. Electrochem. Commun. 2006, 8 (8), 1299. doi: 10.1016/j.elecom.2006.05.021

    54. [54]

      (54) Marinaro, M.; Pfanzelt, M.; Kubiak, P.; Marassi, R.; Wohlfahrt-Mehrens, M. J. Power Sources 2011, 196 (22), 9825. doi: 10.1016/j.jpowsour.2011.07.008

    55. [55]

      (55) Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Gräetzel, M. Chem. Mater. 2005, 17 (5), 1248. doi: 10.1021/cm048249t

    56. [56]

      (56) Ryu, W. H.; Nam, D. H.; Ko, Y. S.; Kim, R. H.; Kwon, H. S. Electrochim. Acta 2012, 61, 19. doi: 10.1016/j.electacta. 2011.11.042

    57. [57]

      (57) Fang, H. T.; Liu, M.; Wang, D. W.; Sun, T.; Guan, D. S.; Li, F.; Zhou, J. G.; Sham, T. K.; Cheng, H. M. Nanotechnology 2009, 20 (22). 266.

    58. [58]

      (58) Kim, J.; Cho, J. J. Electrochem. Soc. 2007, 154 (6), A542.

    59. [59]

      (59) Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W. Phys. Rev. Lett. 2001, 86 (7), 1275. doi: 10.1103/PhysRevLett. 86.1275

    60. [60]

      (60) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453 (7195), 638. doi: 10.1038/nature06964

    61. [61]

      (61) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. J. Am. Chem. Soc. 2010, 132 (17), 6124. doi: 10.1021/ja100102y

    62. [62]

      (62) Pan, D.; Huang, H.; Wang, X.; Wang, L.; Liao, H.; Li, Z.; Wu, M. Journal of Materials Chemistry A 2014, 2 (29), 11454. doi: http://dx.doi.org/10.1039/c4ta01613k

    63. [63]

      (63) Yan, J. Y.; Song, H. H.; Yang, S. B.; Chen, X. H. Mater. Chem. Phys. 2009, 118 (2-3), 367. doi: 10.1016/j.matchemphys. 2009.08.007

    64. [64]

      (64) Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P. Adv. Mater. 2008, 20 (21), 4135.

    65. [65]

      (65) Lamberti, A.; Garino, N.; Sacco, A.; Bianco, S.; Manfredi, D.; Gerbaldi, C. Electrochim. Acta 2013, 102 (0), 233.

    66. [66]

      (66) Lamberti, A.; Garino, N.; Sacco, A.; Bianco, S.; Chiodoni, A.; Gerbaldi, C. Electrochim. Acta 2015, 151, 222. doi: 10.1016/j.electacta.2014.10.150

    67. [67]

      (67) Guan, D. S.; Cai, C. A.; Wang, Y. J. Nanosci. Nanotechnol. 2011, 11 (4), 3641. doi: 10.1166/jnn.2011.3765

    68. [68]

      (68) Panda, S. K.; Yoon, Y.; Jung, H. S.; Yoon, W. S.; Shin, H. J. Power Sources 2012, 204, 162. doi: 10.1016/j.jpowsour. 2011.12.048

    69. [69]

      (69) nzalez, J. R.; Alcantara, R.; Nacimiento, F.; Ortiz, G. F.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R. J. Phys. Chem. C 2012, 116 (38), 20182. doi: 10.1021/jp3050115

    70. [70]

      (70) Freitas, R. G.; Justo, S. G.; Pereira, E. C. J. Power Sources 2013, 243, 569. doi: 10.1016/j.jpowsour.2013.06.044

    71. [71]

      (71) Han, H.; Song, T.; Lee, E. K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y. C.; Choi, Y. M.; Jung, Y. G.; Paik, U. ACS Nano 2012, 6 (9), 8308. doi: 10.1021/nn303002u

    72. [72]

      (72) Beguin, F.; Chevallier, F.; Vix, C.; Saadallah, S.; Rouzaud, J. N.; Frackowiak, E. J. Phys. Chem. Solids 2004, 65 (2-3), 211. doi: 10.1016/j.jpcs.2003.10.050

    73. [73]

      (73) Li, H.; Shi, L. H.; Lu, W.; Huang, X. J.; Chen, L. Q. J. Electrochem. Soc. 2001, 148 (8), A915.

    74. [74]

      (74) Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P. Electrochim. Acta 1999, 45 (7), 1135. doi: 10.1016/S0013-4686(99)00312-6

    75. [75]

      (75) Aurbach, D. Electrochim. Acta 1999, 45 (1-2), 1. doi: 10.1016/S0013-4686(99)00188-7

    76. [76]

      (76) Verma, P.; Maire, P.; Novak, P. Electrochim. Acta 2010, 55 (22), 6332. doi: 10.1016/j.electacta.2010.05.072

    77. [77]

      (77) Kawamura, T.; Okada, S.; Yamaki, J. J. Power Sources 2006, 156 (2), 547. doi: 10.1016/j.jpowsour.2005.05.084

    78. [78]

      (78) Brutti, S.; Gentili, V.; Menard, H.; Scrosati, B.; Bruce, P. G. Adv. Energy Mater. 2012, 2 (3), 322. doi: 10.1002/aenm. 201100492

    79. [79]

      (79) Morterra, C. Journal of the Chemical Society-Faraday Transactions I 1988, 84, 1617. doi: 10.1039/f19888401617

    80. [80]

      (80) Li, C.; Zhang, H. P.; Fu, L. J.; Liu, H.; Wu, Y. P.; Ram, E.; Holze, R.; Wu, H. Q. Electrochim. Acta 2006, 51 (19), 3872. doi: 10.1016/j.electacta.2005.11.015

    81. [81]

      (81) Kim, M. G.; Kim, H.; Cho, J. J. Electrochem. Soc. 2010, 157 (7), A802.

    82. [82]

      (82) Bi, Z.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M.; Guo, B.; Sun, X. G.; Dai, S. J. Power Sources 2013, 222, 461. doi: 10.1016/j.jpowsour. 2012.09.019

    83. [83]

      (83) Zhang, Z. J.; Zeng, Q. Y.; Chou, S. L.; Li, X. J.; Li, H. J.; Ozawa, K.; Liu, H. K.; Wang, J. Z. Electrochim. Acta 2014, 133, 570. doi: 10.1016/j.electacta.2014.04.049

    84. [84]

      (84) Zhao, B.; Jiang, S.; Su, C.; Cai, R.; Ran, R.; Tade, M. O.; Shao, Z. Journal of Materials Chemistry A 2013, 1 (39), 12310. doi: 10.1039/c3ta12770b

    85. [85]

      (85) Chen, J.; Yang, L.; Tang, Y. J. Power Sources 2010, 195 (19), 6893. doi: 10.1016/j.jpowsour.2010.04.005

    86. [86]

      (86) Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W. I.; Kim, S.; Liu, L.; Paik, U. Nano Research 2014, 7 (4), 491. doi: 10.1007/s12274-014-0415-1

    87. [87]

      (87) Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Nano Lett. 2012, 12 (3), 1690. doi: 10.1021/nl300173j

    88. [88]

      (88) Wu, H.; Xu, C.; Xu, J.; Lu, L.; Fan, Z.; Chen, X.; Song, Y.; Li, D. Nanotechnology 2013, 24 (45).

    89. [89]

      (89) Salari, M.; Konstantinov, K.; Liu, H. K. J. Mater. Chem. 2011, 21 (13), 5128. doi: 10.1039/c0jm04085a

    90. [90]

      (90) Guo, W.; Xue, X.; Wang, S.; Lin, C.; Wang, Z. L. Nano Lett. 2012, 12 (5), 2520. doi: 10.1021/nl3007159

    91. [91]

      (91) Li, Z.; Ding, Y.; Kang, W.; Li, C.; Lin, D.; Wang, X.; Chen, Z.; Wu, M.; Pan, D. Electrochim. Acta 2015, 161, 40.

    92. [92]

      (92) Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134 (8), 3659. doi: 10.1021/ja211369s

    93. [93]

      (93) Zhang, J.; Zhang, J.; Ren, H.; Yu, L.; Wu, Z.; Zhang, Z. J. Alloy. Compd. 2014, 609, 178. doi: 10.1016/j.jallcom. 2014.04.115

    94. [94]

      (94) Li, Y.; Wang, Z.; Lv, X. J. Journal of Materials Chemistry A 2014, 2 (37), 15473. doi: 10.1039/C4TA02890B

    95. [95]

      (95) Xu, J.; Wang, Y.; Li, Z.; Zhang, W. J. Power Sources 2008, 175 (2), 903. doi: 10.1016/j.jpowsour.2007.10.014

    96. [96]

      (96) Kyeremateng, N. A.; Vacandio, F.; Sougrati, M. T.; Martinez, H.; Jumas, J. C.; Knauth, P.; Djenizian, T. J. Power Sources 2013, 224, 269. doi: 10.1016/j.jpowsour.2012.09.104

    97. [97]

      (97) Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. J. Power Sources 2011, 196 (16), 6815. doi: 10.1016/j.jpowsour.2010.09.109

    98. [98]

      (98) Fan, J.; Zhao, Z.; Wang, J.; Zhu, L. Appl. Surf. Sci. 2015, 324 (0), 691.

    99. [99]

      (99) Cheng, Z. W.; Feng, L.; Chen, J. M.; Yu, J. M.; Jiang, Y. F. J. Hazard. Mater. 2013, 254, 354.

    100. [100]

      (100) Liu, H. J.; Liu, G. G.; Zhou, Q. X.; Xie, G. H.; Hou, Z. H.; Zhang, M. L.; He, Z. W. Microporous Mesoporous Mat. 2011, 142 (2-3), 439. doi: 10.1016/j.micromeso.2010.11.035

    101. [101]

      (101) Fan, X.; Wan, J.; Liu, E.; Sun, L.; Hu, Y.; Li, H.; Hu, X.; Fan, J. Ceram. Int. 2015, 41 (3, Part B), 5107. doi: 10.1016/j.ceramint.2014.12.083

    102. [102]

      (102) Fan, X.; Fan, J.; Hu, X.; Liu, E.; Kang, L.; Tang, C.; Ma, Y.; Wu, H.; Li, Y. Ceram. Int. 2014, 40 (10), 15907. doi: 10.1016/j.ceramint.2014.07.119

    103. [103]

      (103) Li, Y.; Wang, Y.; Kong, J.; Wang, J. Appl. Surf. Sci. 2015, 328 (0), 115.

    104. [104]

      (104) Han, W. Q.; Wen, W.; Yi, D.; Liu, Z.; Maye, M. M.; Lewis, L.; Hanson, J.; Gang, O. J. Phys. Chem. C 2007, 111 (39), 14339. doi: 10.1021/jp074381f

    105. [105]

      (105) Yu, Y.; Wu, H. H.; Zhu, B. L.; Wang, S. R.; Huang, W. P.; Wu, S. H.; Zhang, S. M. Catal. Lett. 2008, 121 (1-2), 165. doi: 10.1007/s10562-007-9316-1

    106. [106]

      (106) Umek, P.; Pregelj, M.; Gloter, A.; Cevc, P.; Jaglicic, Z.; Ceh, M.; Pirnat, U.; Arcon, D. J. Phys. Chem. C 2008, 112 (39), 15311. doi: 10.1021/jp805005k

    107. [107]

      (107) Meksi, M.; Berhault, G.; Guillard, C.; Kochkar, H. Catal. Commun. 2015, 61, 107. doi: 10.1016/j.catcom.2014.12.020

    108. [108]

      (108) Kim, D. H.; Jang, J. S.; o, N. H.; Kwon, M. S.; Lee, J. W.; Choi, S. H.; Shin, D. W.; Kim, S. J.; Lee, K. S. Catal. Today 2009, 146 (1-2), 230. doi: 10.1016/j.cattod.2009.04.007

    109. [109]

      (109) Szirmai, P.; Horvath, E.; Nafradi, B.; Mickovic, Z.; Smajda, R.; Djokic, D. M.; Schenk, K.; Forro, L.; Magrez, A. J. Phys. Chem. C 2013, 117 (1), 697. doi: 10.1021/jp3104722

    110. [110]

      (110) Long, L. Z.; Wu, L. P.; Yang, X.; Li, X. J. Journal of Materials Science & Technology 2014, 30 (8), 765. doi: 10.1016/j.jmst. 2014.03.010

    111. [111]

      (111) Kim, H. S.; Kang, S. H.; Chung, Y. H.; Sung, Y. E. Electrochem. Solid State Lett. 2010, 13 (2), A15.

    112. [112]

      (112) Ivanov, S.; Grieseler, R.; Cheng, L.; Schaaf, P.; Bund, A. J. Electroanal. Chem. 2014, 731, 6. doi: 10.1016/j.jelechem. 2014.07.038

    113. [113]

      (113) Brumbarov, J.; Kunze-Liebhaeuser, J. J. Power Sources 2014, 258, 129. doi: 10.1016/j.jpowsour.2014.02.049

    114. [114]

      (114) Guan, D.; Li, J.; Gao, X.; Yuan, C. J. Power Sources 2014, 246, 305. doi: 10.1016/j.jpowsour.2013.07.096

    115. [115]

      (115) Fan, Y.; Zhang, N.; Zhang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. Electrochim. Acta 2013, 94, 285. doi: 10.1016/j.electacta.2013.01.114

    116. [116]

      (116) Kulova, T. L.; Skundin, A. M.; Pleskov, Y. V.; Terukov, E. I.; Kon'kov, O. I. J. Electroanal. Chem. 2007, 600 (1), 217. doi: 10.1016/j.jelechem.2006.07.002

    117. [117]

      (117) Wu, X. M.; Zhang, S. C.; Wang, L. L.; Du, Z. J.; Fang, H.; Ling, Y. H.; Huang, Z. H. J. Mater. Chem. 2012, 22 (22), 11151. doi: 10.1039/c2jm30885a

    118. [118]

      (118) Jeun, J. H.; Park, K. Y.; Kim, D. H.; Kim, W. S.; Kim, H. C.; Lee, B. S.; Kim, H.; Yu, W. R.; Kang, K.; Hong, S. H. Nanoscale 2013, 5 (18), 8480. doi: 10.1039/c3nr01964k

    119. [119]

      (119) Fan, Y.; Zhang, N.; Zhang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. Electrochim. Acta 2013, 94 (0), 285.

    120. [120]

      (120) Kang, K. Y.; Lee, Y. G.; Kim, S.; Seo, S. R.; Kim, J. C.; Kim, K. M. Mater. Chem. Phys. 2012, 137 (1), 169. doi: 10.1016/j.matchemphys.2012.09.001

    121. [121]

      (121) Park, S. J.; Kim, Y. J.; Lee, H. J. Power Sources 2011, 196 (11), 5133. doi: 10.1016/j.jpowsour.2011.01.105

    122. [122]

      (122) Bresser, D.; Oschmann, B.; Tahir, M. N.; Mueller, F.; Lieberwirth, I.; Tremel, W.; Zentel, R.; Passerini, S. J. Electrochem. Soc. 2015, 162 (2), A3013.

    123. [123]

      (123) Plylahan, N.; Letiche, M.; Samy Barr, M. K.; Ellis, B.; Maria, S.; Phan, T. N. T.; Bloch, E.; Knauth, P.; Djenizian, T. J. Power Sources 2015, 273, 1182.

    124. [124]

      (124) He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9 (3), 425. doi: 10.1016/j.elecom.2006.10.008

    125. [125]

      (125) Fang, D.; Huang, K. L.; Liu, S. Q.; Li, Z. J. J. Alloy. Compd. 2008, 464 (1-2), L5.

    126. [126]

      (126) Kim, H.; Kim, M. G.; Shin, T. J.; Shin, H. J.; Cho, J. Electrochem. Commun. 2008, 10 (11), 1669. doi: 10.1016/j.elecom.2008.08.035

    127. [127]

      (127) Kang, K. Y.; Shin, D. O.; Lee, Y. G.; Kim, S.; Kim, K. M. Journal of Electroceramics 2014, 32 (2-3), 246. doi: 10.1007/s10832-013-9882-0

    128. [128]

      (128) Wang, J.; Zhou, Y. K.; Xiong, B.; Zhao, Y. Y.; Huang, X. J.; Shao, Z. P. Electrochim. Acta 2013, 88, 847. doi: 10.1016/j.electacta.2012.10.010

    129. [129]

      (129) Tang, Y.; Liu, Z.; Lu, X.; Wang, B.; Huang, F. RSC Advances 2014, 4 (68), 36372. doi: 10.1039/C4RA05027D

    130. [130]

      (130) Zhu, C.; Xia, X.; Liu, J.; Fan, Z.; Chao, D.; Zhang, H.; Fan, H. J. Nano Energy 2014, 4, 105.

    131. [131]

      (131) Ortiz, G. F.; Hanzu, I.; Lavela, P.; Tirado, J. L.; Knauth, P.; Djenizian, T. J. Mater. Chem. 2010, 20 (20), 4041. doi: 10.1039/b927122h

    132. [132]

      (132) Kim, K. M.; Kang, K. Y.; Kim, S.; Lee, Y. G. Current Applied Physics 2012, 12 (4), 1199. doi: 10.1016/j.cap. 2012.02.059


  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(622)
  • Abstract views(780)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return