Citation: SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1527-1534. doi: 10.3866/PKU.WHXB201506151
-
The cuboid layered 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 cobalt-free lithium-rich solid-solution cathode material was synthesized by a facile quick co-precipitation method. The prepared material was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. It was found that the as-prepared material has a typical hexa nal α-NaFeO2 layered structure with R3m space group, and the chemical composition of this material is similar to the corresponding target material. SEM and TEM images reveal that the cuboid structures are assembled from nanoparticles with particle sizes of 40-200 nm. A possible formation mechanism of this cuboid aggregation is proposed. The electrochemical tests (in the voltage range 2.0-4.8 V vs Li/Li+) indicate that the as-prepared material exhibits excellent rate capability. It delivers approximately 243 and 143 mAh·g-1 corresponding to 0.1C and 10C, respectively. Moreover, the asprepared material has od cycling stability even after high rate measurement, delivering a high capacity retention of 90.7% after 72 cycles at 0.5C. This co-precipitation approach, which has facile operation processes and od results, is a economic technique that could facilitate the application of Li-rich cathode on a large scale.
-
-
[1]
(1) Cheng, F.; Xin, Y.; Chen, J.; Lu, L.; Zhang, X.; Zhou, H. J. Mater. Chem. A 2013, 1, 5301. doi: 10.1039/c3ta00153a
-
[2]
(2) Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Kageyama, H.; Imaizumi, J.; Shibuya, H.; Akimoto, J. J. Power Sources 2013, 221, 427. doi: 10.1016/j.jpowsour.2012.08.055
-
[3]
(3) Xue, Q. R.; Li, J. L.; Xu, G. F.; Hou, P. F.; Yan, G.; Dai, Y.; Wang, X. D.; Gao, F. Acta Phys. -Chim. Sin. 2014, 30, 1667. [薛庆瑞, 李建玲, 徐国峰, 侯朋飞, 晏刚, 代宇, 王新东, 高飞. 物理化学学报, 2014, 30, 1667.] doi: 10.3866/PKU. WHXB201406251
-
[4]
(4) Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Adv. Mater. 2010, 22, 4364. doi: 10.1002/adma.v22:39
-
[5]
(5) Cho, T. H.; Shiosaki, Y.; Noguchi, H. J. Power Sources 2006, 159, 1322. doi: 10.1016/j.jpowsour.2005.11.080
-
[6]
(6) Lei, C. H.; Bareño, J.; Wen, J. G.; Petrov, I.; Kang, S. H.; Abraham, D. P. J. Power Sources 2008, 178, 422. doi: 10.1016/j.jpowsour.2007.11.077
-
[7]
(7) Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Electrochem. Commun. 2007, 9, 787. doi: 10.1016/j.elecom.2006.11.006
-
[8]
(8) Kim, S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Hackney, S. A.; Yoon, W.; Grey, C. P. Chem. Mater. 2004, 16, 1996. doi: 10.1021/cm0306461
-
[9]
(9) Lin, J.; Mu, D.; Jin, Y.; Wu, B.; Ma, Y.; Wu, F. J. Power Sources 2013, 230, 76. doi: 10.1016/j.jpowsour.2012.12.042
-
[10]
(10) Shojan, J.; Chitturi, V. R.; Torres, L.; Singh, G.; Katiyar, R. S. Mater. Lett. 2013, 104, 57. doi: 10.1016/j.matlet.2013.04.001
-
[11]
(11) Liu, G. B.; Liu, H.; Shi, Y. F. Electrochim. Acta 2013, 88, 112. doi: 10.1016/j.electacta.2012.10.054
-
[12]
(12) Wu, F.; Lu, H.; Su, Y.; Li, N.; Bao, L.; Chen, S. J. Appl. Electrochem. 2010, 40, 783. doi: 10.1007/s10800-008-0057-2
-
[13]
(13) Zhu, Z.; Zhu, L. J. Power Sources 2014, 256, 178. doi: 10.1016/j.jpowsour.2014.01.068
-
[14]
(14) Xue, Q. R.; Li, J. L.; Xu, G. F.; Zhou, H. W.; Wang, X. D.; Kang, F. Y. J. Mater. Chem. A 2014, 2, 18613. doi: 10.1039/C4TA04024D
-
[15]
(15) Zhang, X.; Cheng, F.; Zhang, K.; Liang, Y.; Yang, S.; Liang, J.; Chen, J. RSC Adv. 2012, 2, 5669. doi: 10.1039/c2ra20669b
-
[16]
(16) Fu, F.; Deng, Y. P.; Shen, C. H.; Xu, G. L.; Peng, X. X.; Wang, Q.; Xu, Y. F.; Fang, J. C.; Huang, L.; Sun, S. G.; Electrochem. Commun. 2014, 44, 54. doi: 10.1016/j.elecom.2014.04.013
-
[17]
(17) Zhang, L.; Borong, W.; Ning, L.; Feng, W. Electrochim. Acta 2014, 118, 67. doi: 10.1016/j.electacta.2013.11.186
-
[18]
(18) Jiang, Y.; Yang, Z.; Luo, W.; Hu, X.; Huang, Y. Phys. Chem. Chem. Phys. 2013, 15, 2954. doi: 10.1039/c2cp44394e
-
[19]
(19) Kim, D.; Gim, J.; Lim, J.; Park, S.; Kim, J. Mater. Res. Bull. 2010, 45, 252. doi: 10.1016/j.materresbull.2009.12.027
-
[20]
(20) Kim, J. H.; Choi, S. H.; Son, M. Y.; Kim, M. H.; Lee, J. K.; Kang, Y. C. Ceram. Int. 2013, 39, 331. doi: 10.1016/j.ceramint. 2012.06.029
-
[21]
(21) Wang, Z. Y.; Li, B.; Ma, J.; Xia, D. G. RSC Adv. 2014, 4, 15825. doi: 10.1039/c3ra47044j
-
[22]
(22) Wu, F.; Wang, Z.; Su, Y.; Guan, Y.; Jin, Y.; Yan, N.; Tian, J.; Bao, L.; Chen, S. J. Power Sources 2014, 267, 337. doi: 10.1016/j.jpowsour.2014.05.097
-
[23]
(23) Ryu, J. H.; Park, B. G.; Kim, S. B.; Park, Y. J. J. Appl. Electrochem. 2009, 39, 1059. doi: 10.1007/s1008-008-9757-2
-
[24]
(24) Kim, G. Y.; Yi, S. B.; Park, Y. J.; Kim, H. G. Mater. Res. Bull. 2008, 43, 3543. doi: 10.1016/j.materresbull.2008.01.011
-
[25]
(25) Yu, C.; Li, G.; Guan, X.; Zheng, J.; Li, L.; Chen, T. Electrochim. Acta 2012, 81, 283. doi: 10.1016/j.electacta.2012.06.084
-
[26]
(26) Li, L.; Zhang, X.; Chen, R.; Zhao, T.; Lu, J.; Wu, F.; Amine, K. J. Power Sources 2014, 249, 28. doi: 10.1016/j.jpowsour. 2013.10.092
-
[27]
(27) Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; nbeau, D.; Walker, W. Nat. Mater. 2013, 12, 827. doi: 10.1038/nmat3699
-
[28]
(28) Liao, S. X.; Zhong, B. H.; Guo, X.; Shi, X. X.; Hua, W. B. Eur. J. Inorg. Chem. 2013, 2013, 5436. doi: 10.1002/ejic.v2013.31
-
[29]
(29) Zhang, L.; Wu, B.; Li, N.; Mu, D.; Zhang, C.; Wu, F. J. Power Sources 2013, 240, 644. doi: 10.1016/j.jpowsour.2013.05.019
-
[30]
(30) Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G. ACS Nano 2012, 7, 760.
-
[31]
(31) Chen, L.; Chen, S.; Hu, D. Z.; Su, Y. F.; Li, W. K.; Wang, Z.; Bao, L. Y.; Wu, F. Acta Phys. -Chim. Sin. 2014, 30, 467. [陈来, 陈实, 胡道中, 苏岳峰, 李维康, 王昭, 包丽颖, 吴峰. 物理化学学报, 2014, 30, 467.] doi: 10.3866/PKU.WHXB 201312252
-
[32]
(32) Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L. ACS Appl. Mater. Interfaces 2014, 6, 10330. doi: 10.1021/am5017649
-
[33]
(33) Wang, Y.; Yan, X.; Bie, X.; Fu, Q.; Du, F.; Chen, G.; Wang, C.; Wei, Y. Electrochim. Acta 2014, 116, 250. doi: 10.1016/j.electacta.2013.10.215
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[7]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[8]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[9]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[12]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[13]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[14]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[15]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[16]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[17]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[18]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[19]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[20]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[1]
Metrics
- PDF Downloads(339)
- Abstract views(499)
- HTML views(7)