Citation:
BAI Mei-Lin, WANG Ming-Lang, HOU Shi-Min. Theoretical Investigation of the Transition Voltages of Cu-Vacuum-Cu Tunneling Junctions[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1474-1482.
doi:
10.3866/PKU.WHXB201506112
-
The transition voltage of copper-vacuum-copper tunneling junctions with atomic protrusions on the electrode surface was investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the transition voltages of Cu-vacuum-Cu junctions with atomically sharp electrodes are mainly determined by the local density of state (LDOS) of the 4p atomic orbitals of the protrusion, and are thus sensitive to the electrode orientation and the variation of the atomic configurations of surface protrusions. For Cu-vacuum-Cu junctions with (111)-oriented electrodes, the transition voltages were calculated to be about 1.40 and 2.40 V when the atomic protrusions were chosen to be one Cu adatom or a copper cluster with four atoms arranged in a pyramid configuration, respectively. The transition voltages of Cu-vacuum-Cu junctions with (100)-oriented electrodes were more different. When the atomic protrusion on the Cu(100) surface was a copper cluster with five atoms arranged in a pyramid configuration, the transition voltage was 1.70 V. In contrast, no transition voltage was observed for Cuvacuum- Cu junctions with one Cu adatom attached to the Cu(100) electrode surface even when the bias exceeded 1.80 V, which is caused by the LDOS of the 4p atomic orbitals of the Cu adatom on the Cu(100) surface being too extended. These results demonstrate the advantages of transition voltage spectroscopy as a tool for analyzing the electronic transport properties of metal-vacuum-metal tunneling junctions.
-
-
-
[1]
(1) Tao, N. J. Nat. Nanotechnol. 2006, 1, 173. doi: 10.1038/nnano.2006.130
-
[2]
(2) Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583. doi: 10.1002/adma.201004291
-
[3]
(3) Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Frisbie, C. D.; Kushmerick, J. G. Phys. Rev. Lett. 2006, 97, 026801. doi: 10.1103/PhysRevLett.97.026801
-
[4]
(4) Beebe, J. M.; Kim, B.; Frisbie, C. D.; Kushmerick, J. G. ACS Nano 2008, 2, 827. doi: 10.1021/nn700424u
-
[5]
(5) Liu, K.; Wang, X.; Wang, F. ACS Nano 2008, 2, 2315. doi: 10.1021/nn800475a
-
[6]
(6) Pakoulev, A.V.; Burtman, V. J. Phys. Chem. C 2009, 113, 21413. doi: 10.1021/jp9056576
-
[7]
(7) Wang, G.; Kim, T. W.; Jo, G.; Lee, T. J. Am. Chem. Soc. 2009, 131, 5980. doi: 10.1021/ja900773h
-
[8]
(8) Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039. doi: 10.1038/nature08639
-
[9]
(9) Tan, A.; Sadat, S.; Reddy, P. Appl. Phys. Lett. 2010, 96, 013110. doi: 10.1063/1.3291521
-
[10]
(10) Noy, G.; Ophir, A.; Selzer, Y. Angew. Chem. Int. Edit. 2010, 49, 5734. doi: 10.1002/anie.v49:33
-
[11]
(11) Bennett, N.; Xu, G.; Esdaile, L. J.; Anderson, H. L.; Macdonald, J. E.; Elliott, M. Small 2010, 6, 2604. doi: 10.1002/smll.201001046
-
[12]
(12) Choi, S. H.; Risko, C.; Delgado, M. C. R.; Kim, B.; Brédas, J. L.; Frisbie, C. D. J. Am. Chem. Soc. 2010, 132, 4358. doi: 10.1021/ja910547c
-
[13]
(13) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Phys. Chem. C 2010, 114, 20431. doi: 10.1021/jp104760b
-
[14]
(14) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Appl. Phys. 2011, 109, 102419. doi: 10.1063/1.3578345
-
[15]
(15) Wang, G.; Kim, Y.; Na, S. I.; Kahng, Y. H.; Ku, J.; Park, S.; Jang, Y. H.; Kim, D. Y.; Lee, T. J. Phys. Chem. C 2011, 115, 17979. doi: 10.1021/jp204340w
-
[16]
(16) Xiang, D.; Zhang, Y.; Pyatkov, F.; Offenhäusser, A.; Mayer, D. Chem. Commun. 2011, 47, 4760. doi: 10.1039/c1cc10144g
-
[17]
(17) Guo, S.; Hihath, J.; Díez-Pérez, I.; Tao, N. J. Am. Chem. Soc. 2011, 133, 19189. doi: 10.1021/ja2076857
-
[18]
(18) Ricoeur, G.; Lenfant, S.; Guérin, D.; Vuilanume, D. J. Phys. Chem. C 2012, 116, 20722. doi: 10.1021/jp305739c
-
[19]
(19) Tan, A.; Balachandran, J.; Dunietz, B. D.; Jang, S. Y.; Gavini, V.; Reddy, P. Appl. Phys. Lett. 2012, 101, 243107. doi: 10.1063/1.4769986
-
[20]
(20) Guo, S.; Zhou, G.; Tao, N. Nano Lett. 2013, 13, 4326. doi: 10.1021/nl4021073
-
[21]
(21) Wang, K.; Hamill, J.; Zhou, J.; Guo, C.; Xu, B. Faraday Discuss. 2014, 174, 91.
-
[22]
(22) Trouwborst, M. L.; Martin, C. A.; Smit, R. H. M.; Guédon, C. M.; Baart, T. A.; van der Molen, S. J.; van Ruitenbeek, J. M. Nano Lett. 2011, 11, 614. doi: 10.1021/nl103699t
-
[23]
(23) Sotthewest, K.; Hellenthal, C.; Kumar, A.; Zandvliet, H. J. W. RSC Adv. 2014, 4, 32438. doi: 10.1039/C4RA04651J
-
[24]
(24) Bâldea, I. Europhys. Lett. 2012, 98, 17010. doi: 10.1209/0295-5075/98/17010
-
[25]
(25) Wu, K.; Bai, M.; Sanvito, S.; Hou, S. Nanotechnology 2013, 24, 025203. doi: 10.1088/0957-4484/24/2/025203
-
[26]
(26) Bâldea, I. RSC Adv. 2014, 4, 33257. doi: 10.1039/C4RA04648J
-
[27]
(27) Wu, K.; Bai, M.; Sanvito, S.; Hou. S. J. Chem. Phys. 2014, 141, 014707. doi: 10.1063/1.4886378
-
[28]
(28) Néel, N.; Kröger, J.; Limot, L.; Frederiksen, T.; Brandbyge, M.; Berndt, R. Phys. Rev. Lett. 2007, 98, 065502. doi: 10.1103/PhysRevLett.98.065502
-
[29]
(29) Schull, G.; Frederiksen, T.; Brandbyge, M.; Berndt, R. Phys. Rev. Lett. 2009, 103, 206803. doi: 10.1103/PhysRevLett.103.206803
-
[30]
(30) Schull, G.; Frederiksen, T.; Arnau, A.; Sanchez-Portal, D.; Berndt, R. Nat. Nanotechnol. 2011, 6, 23. doi: 10.1038/nnano.2010.215
-
[31]
(31) Caciuc, V.; Lennartz, M. C.; Atodiresei, N.; Tsukamoto, S.; Karthäuser, S.; Blügel, S. Phys. Status Solidi B 2013, 250, 2267. doi: 10.1002/pssb.201349076
-
[32]
(32) Vitali, L.; Wahl, P.; Ohmann, R.; Bork, J.; Zhang, Y.; Diekhöner, L.; Kern, K. Phys. Status Solidi B 2013, 250, 2437. doi: 10.1002/pssb.201349246
-
[33]
(33) Meir, Y.; Wingreen, N. S. Phys. Rev. Lett. 1992, 68, 2512. doi: 10.1103/PhysRevLett.68.2512
-
[34]
(34) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
-
[35]
(35) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
-
[36]
(36) Xue, Y.; Datta, S.; Ratner, M. A. Chem. Phys. 2002, 281, 151. doi: 10.1016/S0301-0104(02)00446-9
-
[37]
(37) Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Phys. Rev. B 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401
-
[38]
(38) Zhang, J.; Hou, S.; Li, R.; Qian, Z.; Han, R.; Shen, Z.; Zhao, X.; Xue, Z. Nanotechnology 2005, 16, 3057. doi: 10.1088/0957-4484/16/12/055
-
[39]
(39) Li, R.; Zhang, J.; Hou, S.; Qian, Z.; Shen, Z.; Zhao, X.; Xue, Z. Chem. Phys. 2007, 336, 127. doi: 10.1016/j.chemphys.2007.06.011
-
[40]
(40) Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Nature Mater. 2005, 4, 335. doi: 10.1038/nmat1349
-
[41]
(41) Rocha, A. R.; García-Suárez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Phys. Rev. B 2006, 73, 085414. doi: 10.1103/PhysRevB.73.085414
-
[42]
(42) Rungger, I.; Sanvito, S. Phys. Rev. B 2008, 78, 035407. doi: 10.1103/PhysRevB.78.035407
-
[43]
(43) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302
-
[44]
(44) Troullier, N.; Martins, J. Phys. Rev. B 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993
-
[45]
(45) García-Gil, S.; García, A.; Lorente, N.; Ordejón, P. Phys. Rev. B 2009, 79, 075441. doi: 10.1103/PhysRevB.79.075441
-
[46]
(46) Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
-
[47]
(47) Schwarz, F.; Lörtscher, E. J. Phys.: Condens. Matter 2014, 26, 474201. doi: 10.1088/0953-8984/26/47/474201
-
[48]
(48) Ludoph, B.; van Ruitenbeek, J. M. Phys. Rev. B 2000, 61, 2273. doi: 10.1103/PhysRevB.61.2273
-
[49]
(49) Michaelson, H. B. J. Appl. Phys. 1977, 48, 4729. doi: 10.1063/1.323539
-
[50]
(50) Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids; Plenum Press: New York, 1986.
-
[51]
(51) Ke, S. H.; Baranger, H. U.; Yang, W. J. Chem. Phys. 2005, 123, 114701. doi: 10.1063/1.1993558
-
[52]
(52) Tu. X.; Wang, M.; Sanvito, S.; Hou, S. J. Chem. Phys. 2014, 141, 194702. doi: 10.1063/1.4901945
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[7]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[8]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[9]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[10]
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
-
[11]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[12]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[13]
Qiuyu Xiang , Chunhua Qu , Guang Xu , Yafei Yang , Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094
-
[14]
Na Li , Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134
-
[15]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[16]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[17]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[18]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[19]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[20]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[1]
Metrics
- PDF Downloads(239)
- Abstract views(486)
- HTML views(2)