Citation: BAI Mei-Lin, WANG Ming-Lang, HOU Shi-Min. Theoretical Investigation of the Transition Voltages of Cu-Vacuum-Cu Tunneling Junctions[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1474-1482. doi: 10.3866/PKU.WHXB201506112
-
The transition voltage of copper-vacuum-copper tunneling junctions with atomic protrusions on the electrode surface was investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the transition voltages of Cu-vacuum-Cu junctions with atomically sharp electrodes are mainly determined by the local density of state (LDOS) of the 4p atomic orbitals of the protrusion, and are thus sensitive to the electrode orientation and the variation of the atomic configurations of surface protrusions. For Cu-vacuum-Cu junctions with (111)-oriented electrodes, the transition voltages were calculated to be about 1.40 and 2.40 V when the atomic protrusions were chosen to be one Cu adatom or a copper cluster with four atoms arranged in a pyramid configuration, respectively. The transition voltages of Cu-vacuum-Cu junctions with (100)-oriented electrodes were more different. When the atomic protrusion on the Cu(100) surface was a copper cluster with five atoms arranged in a pyramid configuration, the transition voltage was 1.70 V. In contrast, no transition voltage was observed for Cuvacuum- Cu junctions with one Cu adatom attached to the Cu(100) electrode surface even when the bias exceeded 1.80 V, which is caused by the LDOS of the 4p atomic orbitals of the Cu adatom on the Cu(100) surface being too extended. These results demonstrate the advantages of transition voltage spectroscopy as a tool for analyzing the electronic transport properties of metal-vacuum-metal tunneling junctions.
-
-
[1]
(1) Tao, N. J. Nat. Nanotechnol. 2006, 1, 173. doi: 10.1038/nnano.2006.130
-
[2]
(2) Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583. doi: 10.1002/adma.201004291
-
[3]
(3) Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Frisbie, C. D.; Kushmerick, J. G. Phys. Rev. Lett. 2006, 97, 026801. doi: 10.1103/PhysRevLett.97.026801
-
[4]
(4) Beebe, J. M.; Kim, B.; Frisbie, C. D.; Kushmerick, J. G. ACS Nano 2008, 2, 827. doi: 10.1021/nn700424u
-
[5]
(5) Liu, K.; Wang, X.; Wang, F. ACS Nano 2008, 2, 2315. doi: 10.1021/nn800475a
-
[6]
(6) Pakoulev, A.V.; Burtman, V. J. Phys. Chem. C 2009, 113, 21413. doi: 10.1021/jp9056576
-
[7]
(7) Wang, G.; Kim, T. W.; Jo, G.; Lee, T. J. Am. Chem. Soc. 2009, 131, 5980. doi: 10.1021/ja900773h
-
[8]
(8) Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039. doi: 10.1038/nature08639
-
[9]
(9) Tan, A.; Sadat, S.; Reddy, P. Appl. Phys. Lett. 2010, 96, 013110. doi: 10.1063/1.3291521
-
[10]
(10) Noy, G.; Ophir, A.; Selzer, Y. Angew. Chem. Int. Edit. 2010, 49, 5734. doi: 10.1002/anie.v49:33
-
[11]
(11) Bennett, N.; Xu, G.; Esdaile, L. J.; Anderson, H. L.; Macdonald, J. E.; Elliott, M. Small 2010, 6, 2604. doi: 10.1002/smll.201001046
-
[12]
(12) Choi, S. H.; Risko, C.; Delgado, M. C. R.; Kim, B.; Brédas, J. L.; Frisbie, C. D. J. Am. Chem. Soc. 2010, 132, 4358. doi: 10.1021/ja910547c
-
[13]
(13) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Phys. Chem. C 2010, 114, 20431. doi: 10.1021/jp104760b
-
[14]
(14) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Appl. Phys. 2011, 109, 102419. doi: 10.1063/1.3578345
-
[15]
(15) Wang, G.; Kim, Y.; Na, S. I.; Kahng, Y. H.; Ku, J.; Park, S.; Jang, Y. H.; Kim, D. Y.; Lee, T. J. Phys. Chem. C 2011, 115, 17979. doi: 10.1021/jp204340w
-
[16]
(16) Xiang, D.; Zhang, Y.; Pyatkov, F.; Offenhäusser, A.; Mayer, D. Chem. Commun. 2011, 47, 4760. doi: 10.1039/c1cc10144g
-
[17]
(17) Guo, S.; Hihath, J.; Díez-Pérez, I.; Tao, N. J. Am. Chem. Soc. 2011, 133, 19189. doi: 10.1021/ja2076857
-
[18]
(18) Ricoeur, G.; Lenfant, S.; Guérin, D.; Vuilanume, D. J. Phys. Chem. C 2012, 116, 20722. doi: 10.1021/jp305739c
-
[19]
(19) Tan, A.; Balachandran, J.; Dunietz, B. D.; Jang, S. Y.; Gavini, V.; Reddy, P. Appl. Phys. Lett. 2012, 101, 243107. doi: 10.1063/1.4769986
-
[20]
(20) Guo, S.; Zhou, G.; Tao, N. Nano Lett. 2013, 13, 4326. doi: 10.1021/nl4021073
-
[21]
(21) Wang, K.; Hamill, J.; Zhou, J.; Guo, C.; Xu, B. Faraday Discuss. 2014, 174, 91.
-
[22]
(22) Trouwborst, M. L.; Martin, C. A.; Smit, R. H. M.; Guédon, C. M.; Baart, T. A.; van der Molen, S. J.; van Ruitenbeek, J. M. Nano Lett. 2011, 11, 614. doi: 10.1021/nl103699t
-
[23]
(23) Sotthewest, K.; Hellenthal, C.; Kumar, A.; Zandvliet, H. J. W. RSC Adv. 2014, 4, 32438. doi: 10.1039/C4RA04651J
-
[24]
(24) Bâldea, I. Europhys. Lett. 2012, 98, 17010. doi: 10.1209/0295-5075/98/17010
-
[25]
(25) Wu, K.; Bai, M.; Sanvito, S.; Hou, S. Nanotechnology 2013, 24, 025203. doi: 10.1088/0957-4484/24/2/025203
-
[26]
(26) Bâldea, I. RSC Adv. 2014, 4, 33257. doi: 10.1039/C4RA04648J
-
[27]
(27) Wu, K.; Bai, M.; Sanvito, S.; Hou. S. J. Chem. Phys. 2014, 141, 014707. doi: 10.1063/1.4886378
-
[28]
(28) Néel, N.; Kröger, J.; Limot, L.; Frederiksen, T.; Brandbyge, M.; Berndt, R. Phys. Rev. Lett. 2007, 98, 065502. doi: 10.1103/PhysRevLett.98.065502
-
[29]
(29) Schull, G.; Frederiksen, T.; Brandbyge, M.; Berndt, R. Phys. Rev. Lett. 2009, 103, 206803. doi: 10.1103/PhysRevLett.103.206803
-
[30]
(30) Schull, G.; Frederiksen, T.; Arnau, A.; Sanchez-Portal, D.; Berndt, R. Nat. Nanotechnol. 2011, 6, 23. doi: 10.1038/nnano.2010.215
-
[31]
(31) Caciuc, V.; Lennartz, M. C.; Atodiresei, N.; Tsukamoto, S.; Karthäuser, S.; Blügel, S. Phys. Status Solidi B 2013, 250, 2267. doi: 10.1002/pssb.201349076
-
[32]
(32) Vitali, L.; Wahl, P.; Ohmann, R.; Bork, J.; Zhang, Y.; Diekhöner, L.; Kern, K. Phys. Status Solidi B 2013, 250, 2437. doi: 10.1002/pssb.201349246
-
[33]
(33) Meir, Y.; Wingreen, N. S. Phys. Rev. Lett. 1992, 68, 2512. doi: 10.1103/PhysRevLett.68.2512
-
[34]
(34) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
-
[35]
(35) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
-
[36]
(36) Xue, Y.; Datta, S.; Ratner, M. A. Chem. Phys. 2002, 281, 151. doi: 10.1016/S0301-0104(02)00446-9
-
[37]
(37) Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Phys. Rev. B 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401
-
[38]
(38) Zhang, J.; Hou, S.; Li, R.; Qian, Z.; Han, R.; Shen, Z.; Zhao, X.; Xue, Z. Nanotechnology 2005, 16, 3057. doi: 10.1088/0957-4484/16/12/055
-
[39]
(39) Li, R.; Zhang, J.; Hou, S.; Qian, Z.; Shen, Z.; Zhao, X.; Xue, Z. Chem. Phys. 2007, 336, 127. doi: 10.1016/j.chemphys.2007.06.011
-
[40]
(40) Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Nature Mater. 2005, 4, 335. doi: 10.1038/nmat1349
-
[41]
(41) Rocha, A. R.; García-Suárez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Phys. Rev. B 2006, 73, 085414. doi: 10.1103/PhysRevB.73.085414
-
[42]
(42) Rungger, I.; Sanvito, S. Phys. Rev. B 2008, 78, 035407. doi: 10.1103/PhysRevB.78.035407
-
[43]
(43) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302
-
[44]
(44) Troullier, N.; Martins, J. Phys. Rev. B 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993
-
[45]
(45) García-Gil, S.; García, A.; Lorente, N.; Ordejón, P. Phys. Rev. B 2009, 79, 075441. doi: 10.1103/PhysRevB.79.075441
-
[46]
(46) Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
-
[47]
(47) Schwarz, F.; Lörtscher, E. J. Phys.: Condens. Matter 2014, 26, 474201. doi: 10.1088/0953-8984/26/47/474201
-
[48]
(48) Ludoph, B.; van Ruitenbeek, J. M. Phys. Rev. B 2000, 61, 2273. doi: 10.1103/PhysRevB.61.2273
-
[49]
(49) Michaelson, H. B. J. Appl. Phys. 1977, 48, 4729. doi: 10.1063/1.323539
-
[50]
(50) Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids; Plenum Press: New York, 1986.
-
[51]
(51) Ke, S. H.; Baranger, H. U.; Yang, W. J. Chem. Phys. 2005, 123, 114701. doi: 10.1063/1.1993558
-
[52]
(52) Tu. X.; Wang, M.; Sanvito, S.; Hou, S. J. Chem. Phys. 2014, 141, 194702. doi: 10.1063/1.4901945
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[5]
Qiuyu Xiang , Chunhua Qu , Guang Xu , Yafei Yang , Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094
-
[6]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[7]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[8]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[11]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[12]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[13]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[14]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[15]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[16]
Xiangchun Li , Wei Xue , Xu Liu , Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018
-
[17]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[18]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[19]
Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080
-
[20]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[1]
Metrics
- PDF Downloads(239)
- Abstract views(444)
- HTML views(2)