Citation: REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1215-1218. doi: 10.3866/PKU.WHXB201506102
-
Atmospheric- pressure microplasma is an attractive gaseous electrode, and may replace the commonly used rare metal electrodes for electrochemical reactions. The reactions at the plasma anode-liquid interface have not been well investigated, and application of plasma anodes to electrodeposition is still rare. In this communication, by choosing the oxidation of ferrocyanide to ferricyanide as a model reaction, we carefully investigated the charge-transfer reaction at the interface between a plasma anode and an ionic solution. The results showed that ferrocyanide was progressively oxidated to ferricyanide over time, and the rate of oxidation was proportional to the discharge current. We also found that after the discharge the oxidation percent of ferrocyanide still increased approximately linearly with storage time, and the increasing rate was dependent on the discharge time. The rate of oxidation after discharge was much lower than that caused by discharge. These results demonstrate that atmospheric-pressure microplasma could act as a gaseous anode for transferring positive charges at the plasma-liquid interface and inducing electrochemical reactions in solution. During discharge, oxidative active species were also produced. We also successfully electrodeposited copper on stainless steel with the assistance of a microplasma anode in CuSO4 saturated solution, and the current efficiency was about 90%.
-
Keywords:
-
Microplasma
, - Anode,
- Charge transfer,
- Interface,
- Electrodeposition
-
-
-
[1]
(1) Attri, P.; Arora, B.; Choi, E. H. RSC Adv. 2013, 3, 12540. doi: 10.1039/c3ra41277f
-
[2]
(2) Akolkar, R.; Sankaran, R. M. J. Vac. Sci. Technol. A 2013, 31, 050811. doi: 10.1116/1.4810786
-
[3]
(3) Tao, J. L.; Xiong, Y. Q. Acta Phys. -Chim. Sin. 2013, 29, 205. [陶晶亮, 熊源泉. 物理化学学报, 2013, 29, 205.] doi: 10.3866/PKU.WHXB201210264
-
[4]
(4) Zhao, Y.; Wang, L.; Zhang, J. L.; Guo, H. C. Acta Phys. -Chim. Sin. 2014, 30, 738. [赵越, 王丽, 张家良, 郭洪臣. 物理化学学报, 2014, 30, 738.] doi: 10.3866/PKU.WHXB201402141
-
[5]
(5) Baba, K.; Kaneko, T.; Hatakeyama, R.; Motomiya, K.; Tohji, K. Chem. Commun. 2010, 46, 255. doi: 10.1039/B918505D
-
[6]
(6) Chen, Q.; Kaneko, T.; Hatakeyama, R. Chem. Phys. Lett. 2012, 521, 113. doi: 10.1016/j.cplett.2011.11.065
-
[7]
(7) Yan, T. T.; Zhong, X. X.; Rider, A. E.; Lu, Y.; Furman, S. A.; Ostrikov, K. Chem. Commun. 2014, 50, 3144. doi: 10.1039/c3cc48846b
-
[8]
(8) Huang, X. Z.; Zhong, X. X.; Lu, Y.; Li, Y. S.; Rider, A. E.; Furman, S. A.; Ostrikov, K. Nanotechnology 2013, 24, 095604. doi: 10.1088/0957-4484/24/9/095604
-
[9]
(9) Patel, J.; Nemcova, L.; Maguire, P.; Graham, W. G.; Mariotti, D. Nanotechnology 2013, 24, 245604. doi: 10.1088/0957-4484/24/24/245604
-
[10]
(10) Pootawang, P.; Saito, N.; Lee, Y. S. Nanotechnology 2013, 24, 055604. doi: 10.1088/0957-4484/24/5/055604
-
[11]
(11) Liu, C. J.; Zhao, Y.; Li, Y. Z.; Zhang, D. S.; Chang, Z.; Bu, X. H. ACS Sustain. Chem. Eng. 2014, 2, 3. doi: 10.1021/sc400376m
-
[12]
(12) Li, Z. H.; Zhang, Z. K.; Guo, D. Z. Acta Phys. -Chim. Sin. 2010, 26, 3106. [李兆虎, 张志昆, 郭等柱. 物理化学学报, 2010, 26, 3106.] doi: 10.3866/PKU.WHXB20101114
-
[13]
(13) Shirai, N.; Uchida, S.; Tochikubo, F. Jpn. J. App. Phys. 2014, 53, 046202. doi: 10.7567/JJAP.53.046202
-
[14]
(14) Li, Z. A.; Tan, Q.; Hou, X. D.; Xu, K. L.; Zheng, C. B. Anal. Chem. 2014, 86, 12093. doi: 10.1021/ac502911p
-
[15]
(15) Webb, M. R.; Andrade, F. J.; Hieftje, G. M. Anal. Chem. 2007, 79, 7807. doi: 10.1021/ac0707885
-
[16]
(16) Webb, M. R.; Andrade, F. J.; Hieftje, G. M. Anal. Chem. 2007, 79, 7899. doi: 10.1021/ac070789x
-
[17]
(17) Wang, X.; Zhou, M.; Jin, X. Electrochim. Acta 2012, 83, 501. doi: 10.1016/j.electacta.2012.06.131
-
[18]
(18) Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Chemical Engineering Journal 2014, 236, 348. doi: 10.1016/j.cej.2013.09.090
-
[19]
(19) Richmonds, C.; Sankaran, R. M. Appl. Phys. Lett. 2008, 93, 131501. doi: 10.1063/1.2988283
-
[20]
(20) Richmonds, C.; Witzke, M.; Bartling, B.; Lee, S.W.; Wainright, J.; Liu, C. C.; Sankaran, R. M. J. Am. Chem. Soc. 2011, 133, 17582. doi: 10.1021/ja207547b
-
[21]
(21) Rumbach, P.; Witzke, M.; Sankaran, R. M.; , D. B. J. Am. Chem. Soc. 2013, 135, 16264. doi: 10.1021/ja407149y
-
[22]
(22) Denaro, A. R.; Hickling, A. J. Electrochem. Soc. 1958, 105, 265. doi: 10.1149/1.2428821
-
[23]
(23) Yan, Z. C.; Chen, L.; Wang, H. L. Acta Phys. -Chim. Sin. 2007, 23, 835. [严宗诚, 陈砺, 王红林. 物理化学学报, 2007, 23, 835.] doi: 10.3866/PKU.WHXB20070608
-
[24]
(24) Sengupta, S. K.; Singh, O. P. J. Electroanal. Chem. 1994, 369, 113. doi: 10.1016/0022-0728(94)87089-6
-
[25]
(25) Shirai, N.; Uchida, S.; Tochikubo, F. Jpn. J. Appl. Phys. 2014, 53, 046202. doi: 10.7567/JJAP.53.046202
-
[1]
-
-
[1]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[2]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[3]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[4]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[5]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[6]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[7]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[8]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[9]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[10]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[11]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[12]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[13]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[14]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[15]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[16]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[17]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[18]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[19]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[20]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[1]
Metrics
- PDF Downloads(378)
- Abstract views(618)
- HTML views(21)