Citation: LI Bo-Xuan, GUO Qian-Jin, XIA An-Dong. Spectroscopic Study of the Structural Heterogeneity and Microviscosity of [bmim][PF6] and [moemim][PF6] Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1452-1460. doi: 10.3866/PKU.WHXB201506101
-
Room temperature ionic liquids (RTILs), which have several special properties such as negligible vapor pressure, high thermal and chemical stability, od molecular structure and property designability, have received a great deal of attention, and have emerged as potential environmentally benign solvents. Therefore, a deep understanding of the solvent properties of RTILs, especially the microenvironment properties, is crucial to design new RTILs and extend their applications. The structural heterogeneities and local viscosities of the microenvironments of the ionic liquid [bmim][PF6] and the ether-functionalized ionic liquid [moemim][PF6] were investigated by the rotational dynamics of coumarin 153 (C153) and the excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of 1,3-bis(1-pyrenyl)propane (BPP). The rotational dynamics of C153 shows that there are incompact and compact domains within the heterogeneous structure of [bmim][PF6], resulting in fast and slow components of C153 rotational dynamics. The rotational dynamics of C153 shows that there is mainly one type of microenvironment in [moemim][PF6]. The C153 rotation time constants show that the microviscosity of [moemim][PF6] is lower than that of [bmim][PF6], and this result is confirmed by steady-state fluorescence measurement with the BPP microviscosity probe. The side chain of [moemim][PF6] is more polar and more flexible than that of [bmim][PF6], and the oxygen of the ether group could act as a hydrogen bond acceptor and interact with the cations of the ionic liquid, which possibly reduces the electrostatic attraction between the cations and anions in the ionic liquid and leads to the lower structural heterogeneity and microviscosity of [moemim][PF6].
-
-
[1]
(1) Dickinson, E.; Williams, M. E.; Hendrickson, S. M.; Masui, H.; Murray, R. W. J. Am. Chem. Soc. 1999, 121 (4), 613. doi: 10.1021/ja983184e
-
[2]
(2) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102 (10), 3667. doi: 10.1021/cr010338r
-
[3]
(3) Freemantle, M. Chem. Eng. News 1998, 76 (13), 32. doi: 10.1021/cen-v076n013.p032
-
[4]
(4) Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Chem. Commun. 1998, No. 16, 1765. doi: 10.1039/A803999B
-
[5]
(5) Seddon, K. R. Nat. Mater. 2003, 2 (6), 363. doi: 10.1038/nmat907
-
[6]
(6) Welton, T. Chem. Rev. 1999, 99 (8), 2071. doi: 10.1021/cr980032t
-
[7]
(7) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2002, 106 (18), 4447. doi: 10.1021/jp011498+
-
[8]
(8) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2002, 106 (28), 6670. doi: 10.1021/jp0143591
-
[9]
(9) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2003, 107 (38), 7340. doi: 10.1021/jp030683f
-
[10]
(10) Paul, A.; Mandal, P. K.; Samanta, A. J. Phys. Chem. B 2005, 109 (18), 9148. doi: 10.1021/jp0503967
-
[11]
(11) Saha, S.; Mandal, P. K.; Samanta, A. Phys. Chem. Chem. Phys. 2004, 6 (12), 3106. doi: 10.1039/b316943j
-
[12]
(12) Arzhantsev, S.; Jin, H.; Baker, G. A.; Maroncelli, M. J. Phys. Chem. B 2007, 111 (18), 4978. doi: 10.1021/jp067273m
-
[13]
(13) Ingram, J. A.; Moog, R. S.; Ito, N.; Biswas, R.; Maroncelli, M. J. Phys. Chem. B 2003, 107 (24), 5926. doi: 10.1021/jp034231e
-
[14]
(14) Jin, H.; Baker, G. A.; Arzhantsev, S.; Dong, J.; Maroncelli, M. J. Phys. Chem. B 2007, 111 (25), 7291. doi: 10.1021/jp070923h
-
[15]
(15) Maroncelli, M.; Zhang, X. X.; Liang, M.; Roy, D.; Ernsting, N. P. Faraday Discuss. 2012, 154, 409. doi: 10.1039/C1FD00058F
-
[16]
(16) Das, S. K.; Sarkar, M. ChemPhysChem 2012, 13 (11), 2761. doi: 10.1002/cphc.v13.11
-
[17]
(17) Das, S. K.; Sarkar, M. J. Phys. Chem. B 2012, 116 (1), 194. doi: 10.1021/jp207528p
-
[18]
(18) Castner, E. W., Jr.; Wishart, J. F. J. Chem. Phys. 2010, 132 (12), 120901. doi: 10.1063/1.3373178
-
[19]
(19) Castner, E. W., Jr.; Wishart, J. F.; Shirota, H. Accounts Chem. Res. 2007, 40 (11), 1217. doi: 10.1021/ar700169g
-
[20]
(20) Kashyap, H. K.; Santos, C. S.; Daly, R. P.; Hettige, J. J.; Murthy, N. S.; Shirota, H.; Castner, E. W., Jr.; Margulis, C. J. J. Phys. Chem. B 2013, 117 (4), 1130. doi: 10.1021/jp311032p
-
[21]
(21) Kashyap, H. K.; Santos, C. S.; Murthy, N. S.; Hettige, J. J.; Kerr, K.; Ramati, S.; Gwon, J.; hdo, M.; Lall-Ramnarine, S. I.; Wishart, J. F.; Margulis, C. J.; Castner, E. W., Jr. J. Phys. Chem. B 2013, 117 (49), 15328. doi: 10.1021/jp403518j
-
[22]
(22) Triolo, A.; Russina, O.; Caminiti, R.; Shirota, H.; Lee, H. Y.; Santos, C. S.; Murthy, N. S.; Castner, E. W., Jr. Chem. Commun. 2012, 48 (41), 4959. doi: 10.1039/c2cc31550e
-
[23]
(23) Hyun, B. R.; Dzyuba, S. V.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. A 2002, 106 (33), 7579. doi: 10.1021/jp0141575
-
[24]
(24) Xiao, D.; Hines, L. G., Jr.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2009, 113 (14), 4544. doi: 10.1021/jp811293n
-
[25]
(25) Xiao, D.; Rajian, J. R.; Cady, A.; Li, S.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2007, 111 (18), 4669. doi: 10.1021/jp066481b
-
[26]
(26) Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 110 (31), 9775. doi: 10.1021/jp054054c
-
[27]
(27) Wang, X. H.; Tao, G. H.; Wu, X. M.; Kou, Y. Acta Phys. -Chim. Sin. 2005, 21 (5), 528. [王晓化, 陶国宏, 吴晓牧, 寇元. 物理化学学报, 2005, 21 (5), 528.] doi: 10.3866/PKU.WHXB 20050514
-
[28]
(28) Lopes, J. N. C.; mes, M. F. C.; Padua, A. A. H. J. Phys. Chem. B 2006, 110 (34), 16816. doi: 10.1021/jp063603r
-
[29]
(29) Sajadi, M.; Ernsting, N. P. J. Phys. Chem. B 2013, 117, 7675. doi: 10.1021/jp400473n
-
[30]
(30) Mei, Q. Q.; Hou, M. Q.; Ning, H.; Ma, J.; Yang, D. Z.; Han, B. X. Acta Phys. -Chim. Sin. 2014, 30 (12), 2210. [梅清清, 侯民强, 宁汇, 马珺, 杨德重, 韩布兴. 物理化学学报, 2014, 30 (12), 2210.] doi: 10.3866/PKU.WHXB201410151
-
[31]
(31) Song, D. Y.; Chen, J. Acta Phys. -Chim. Sin. 2014, 30 (9), 1605. [宋大勇, 陈静. 物理化学学报, 2014, 30 (9), 1605.] doi: 10.3866/PKU.WHXB201407012
-
[32]
(32) Wang, Y. T.; Voth, G. A. J. Am. Chem. Soc. 2005, 127 (35), 12192. doi: 10.1021/ja053796g
-
[33]
(33) Zhu, G. L.; Wang, Y.; Zhang, L. W.; Liu, Y. C.; Wu, G. Z. Acta Phys. -Chim. Sin. 2015, 31 (3), 419. [朱光来, 王玉, 张良伟, 刘艳成, 吴国忠. 物理化学学报, 2015, 31 (3), 419.] doi: 10.3866/PKU.WHXB201501222
-
[34]
(34) Zhang, X. X.; Liang, M.; Ernsting, N. P.; Maroncelli, M. J. Phys. Chem. B 2013, 117 (16), 4291. doi: 10.1021/jp305430a
-
[35]
(35) Zhang, X. X.; Schroeder, C.; Ernsting, N. P. J. Chem. Phys. 2013, 138 (11), 111102. doi: 10.1063/1.4796198
-
[36]
(36) Ma, X. N.; Yan, L. Y.; Wang, X. F.; Guo, Q. J.; Xia, A. D. J. Phys. Chem. A 2011, 115 (27), 7937. doi: 10.1021/jp202391m
-
[37]
(37) Li, B.; Qiu, M.; Long, S.; Wang, X.; Guo, Q.; Xia, A. Phys. Chem. Chem. Phys. 2013, 15 (38), 16074. doi: 10.1039/c3cp52724g
-
[38]
(38) Li, B.; Wang, Y.; Wang, X.; Vdovic, S.; Guo, Q.; Xia, A. J. Phys. Chem. B 2012, 116 (44), 13272. doi: 10.1021/jp304914e
-
[39]
(39) Sarkar, A.; Trivedi, S.; Baker, G. A.; Pandey, S. J. Phys. Chem. B 2008, 112 (47), 14927. doi: 10.1021/jp804591q
-
[40]
(40) Paul, A.; Samanta, A. J. Phys. Chem. B 2008, 112 (51), 16626. doi: 10.1021/jp8060575
-
[41]
(41) Fei, Z. F.; Geldbach, T. J.; Zhao, D. B.; Dyson, P. J. Chem. -Eur. J. 2006, 12 (8), 2123. doi: 10.1002/chen.200500581
-
[42]
(42) Yue, C. B.; Fang, D.; Liu, L.; Yi, T. F. J. Mol. Liq. 2011, 163 (3), 99. doi: 10.1016/j.molliq.2011.09.001
-
[43]
(43) Chakrabarty, D.; Chakraborty, A.; Seth, D.; Hazra, P.; Sarkar, N. Chem. Phys. Lett. 2004, 397 (4–6), 469. doi: 10.1016/j.cplett.2004.08.141
-
[44]
(44) Chakrabarty, D.; Chakraborty, A.; Seth, D.; Sarkar, N. J. Phys. Chem. A 2005, 109 (9), 1764. doi: 10.1021/jp0460339
-
[45]
(45) Ito, N.; Arzhantsev, S.; Maroncelli, M. Chem. Phys. Lett. 2004, 396 (1–3), 83. doi: 10.1016/j.cplett.2004.08.018
-
[46]
(46) Baker, G. A.; Baker, S. N.; McCleskey, T. M. Chem. Commun. 2003, No. 23, 2932. doi: 10.1039/B310459C
-
[47]
(47) Fletcher, K. A.; Pandey, S. J. Phys. Chem. B 2003, 107 (48), 13532. doi: 10.1021/jp0276754
-
[48]
(48) Karmakar, R.; Samanta, A. Chem. Phys. Lett. 2003, 376 (5–6), 638. doi: 10.1016/S0009-2614(03)01040-6
-
[49]
(49) Pandey, S.; Fletcher, K. A.; Baker, S. N.; Baker, G. A. Analyst 2004, 129 (7), 569. doi: 10.1039/b402145m
-
[50]
(50) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006; pp 361–363.
-
[51]
(51) Smith, T. A.; Bajada, L. M.; Dunstan, D. E. Macromolecules 2002, 35 (7), 2736. doi: 10.1021/ma010954p
-
[52]
(52) Lee, K. C. B.; Siegel, J.; Webb, S. E. D.; Leveque-Fort, S.; Cole, M. J.; Jones, R.; Dowling, K.; Lever, M. J.; French, P. M. W. Biophys. J. 2001, 81 (3), 1265. doi: 10.1016/S0006-3495(01)75784-0
-
[53]
(53) Siqueira, L. J. A.; Ribeiro, M. C. C. J. Phys. Chem. B 2009, 113 (4), 1074. doi: 10.1021/jp807833a
-
[54]
(54) Ganapatibhotla, L.; Zheng, J. P.; Roy, D.; Krishnan, S. Chem. Mater. 2010, 22 (23), 6347. doi: 10.1021/cm102263s
-
[55]
(55) Jin, H.; Li, X.; Maroncelli, M. J. Phys. Chem. B 2007, 111 (48), 13473. doi: 10.1021/jp077226+
-
[1]
-
-
[1]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[2]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[3]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[4]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[16]
Yujia Luo , Yunpeng Qi , Huiping Xing , Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037
-
[17]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[18]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[19]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[20]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[1]
Metrics
- PDF Downloads(281)
- Abstract views(393)
- HTML views(8)