Citation: LI Bo-Xuan, GUO Qian-Jin, XIA An-Dong. Spectroscopic Study of the Structural Heterogeneity and Microviscosity of [bmim][PF6] and [moemim][PF6] Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1452-1460. doi: 10.3866/PKU.WHXB201506101 shu

Spectroscopic Study of the Structural Heterogeneity and Microviscosity of [bmim][PF6] and [moemim][PF6] Ionic Liquids

  • Received Date: 3 April 2015
    Available Online: 10 June 2015

    Fund Project: 国家自然科学基金(21333012, 21373232)资助项目 (21333012, 21373232)

  • Room temperature ionic liquids (RTILs), which have several special properties such as negligible vapor pressure, high thermal and chemical stability, od molecular structure and property designability, have received a great deal of attention, and have emerged as potential environmentally benign solvents. Therefore, a deep understanding of the solvent properties of RTILs, especially the microenvironment properties, is crucial to design new RTILs and extend their applications. The structural heterogeneities and local viscosities of the microenvironments of the ionic liquid [bmim][PF6] and the ether-functionalized ionic liquid [moemim][PF6] were investigated by the rotational dynamics of coumarin 153 (C153) and the excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of 1,3-bis(1-pyrenyl)propane (BPP). The rotational dynamics of C153 shows that there are incompact and compact domains within the heterogeneous structure of [bmim][PF6], resulting in fast and slow components of C153 rotational dynamics. The rotational dynamics of C153 shows that there is mainly one type of microenvironment in [moemim][PF6]. The C153 rotation time constants show that the microviscosity of [moemim][PF6] is lower than that of [bmim][PF6], and this result is confirmed by steady-state fluorescence measurement with the BPP microviscosity probe. The side chain of [moemim][PF6] is more polar and more flexible than that of [bmim][PF6], and the oxygen of the ether group could act as a hydrogen bond acceptor and interact with the cations of the ionic liquid, which possibly reduces the electrostatic attraction between the cations and anions in the ionic liquid and leads to the lower structural heterogeneity and microviscosity of [moemim][PF6].

  • 加载中
    1. [1]

      (1) Dickinson, E.; Williams, M. E.; Hendrickson, S. M.; Masui, H.; Murray, R. W. J. Am. Chem. Soc. 1999, 121 (4), 613. doi: 10.1021/ja983184e

    2. [2]

      (2) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102 (10), 3667. doi: 10.1021/cr010338r

    3. [3]

      (3) Freemantle, M. Chem. Eng. News 1998, 76 (13), 32. doi: 10.1021/cen-v076n013.p032

    4. [4]

      (4) Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Chem. Commun. 1998, No. 16, 1765. doi: 10.1039/A803999B

    5. [5]

      (5) Seddon, K. R. Nat. Mater. 2003, 2 (6), 363. doi: 10.1038/nmat907

    6. [6]

      (6) Welton, T. Chem. Rev. 1999, 99 (8), 2071. doi: 10.1021/cr980032t

    7. [7]

      (7) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2002, 106 (18), 4447. doi: 10.1021/jp011498+

    8. [8]

      (8) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2002, 106 (28), 6670. doi: 10.1021/jp0143591

    9. [9]

      (9) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2003, 107 (38), 7340. doi: 10.1021/jp030683f

    10. [10]

      (10) Paul, A.; Mandal, P. K.; Samanta, A. J. Phys. Chem. B 2005, 109 (18), 9148. doi: 10.1021/jp0503967

    11. [11]

      (11) Saha, S.; Mandal, P. K.; Samanta, A. Phys. Chem. Chem. Phys. 2004, 6 (12), 3106. doi: 10.1039/b316943j

    12. [12]

      (12) Arzhantsev, S.; Jin, H.; Baker, G. A.; Maroncelli, M. J. Phys. Chem. B 2007, 111 (18), 4978. doi: 10.1021/jp067273m

    13. [13]

      (13) Ingram, J. A.; Moog, R. S.; Ito, N.; Biswas, R.; Maroncelli, M. J. Phys. Chem. B 2003, 107 (24), 5926. doi: 10.1021/jp034231e

    14. [14]

      (14) Jin, H.; Baker, G. A.; Arzhantsev, S.; Dong, J.; Maroncelli, M. J. Phys. Chem. B 2007, 111 (25), 7291. doi: 10.1021/jp070923h

    15. [15]

      (15) Maroncelli, M.; Zhang, X. X.; Liang, M.; Roy, D.; Ernsting, N. P. Faraday Discuss. 2012, 154, 409. doi: 10.1039/C1FD00058F

    16. [16]

      (16) Das, S. K.; Sarkar, M. ChemPhysChem 2012, 13 (11), 2761. doi: 10.1002/cphc.v13.11

    17. [17]

      (17) Das, S. K.; Sarkar, M. J. Phys. Chem. B 2012, 116 (1), 194. doi: 10.1021/jp207528p

    18. [18]

      (18) Castner, E. W., Jr.; Wishart, J. F. J. Chem. Phys. 2010, 132 (12), 120901. doi: 10.1063/1.3373178

    19. [19]

      (19) Castner, E. W., Jr.; Wishart, J. F.; Shirota, H. Accounts Chem. Res. 2007, 40 (11), 1217. doi: 10.1021/ar700169g

    20. [20]

      (20) Kashyap, H. K.; Santos, C. S.; Daly, R. P.; Hettige, J. J.; Murthy, N. S.; Shirota, H.; Castner, E. W., Jr.; Margulis, C. J. J. Phys. Chem. B 2013, 117 (4), 1130. doi: 10.1021/jp311032p

    21. [21]

      (21) Kashyap, H. K.; Santos, C. S.; Murthy, N. S.; Hettige, J. J.; Kerr, K.; Ramati, S.; Gwon, J.; hdo, M.; Lall-Ramnarine, S. I.; Wishart, J. F.; Margulis, C. J.; Castner, E. W., Jr. J. Phys. Chem. B 2013, 117 (49), 15328. doi: 10.1021/jp403518j

    22. [22]

      (22) Triolo, A.; Russina, O.; Caminiti, R.; Shirota, H.; Lee, H. Y.; Santos, C. S.; Murthy, N. S.; Castner, E. W., Jr. Chem. Commun. 2012, 48 (41), 4959. doi: 10.1039/c2cc31550e

    23. [23]

      (23) Hyun, B. R.; Dzyuba, S. V.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. A 2002, 106 (33), 7579. doi: 10.1021/jp0141575

    24. [24]

      (24) Xiao, D.; Hines, L. G., Jr.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2009, 113 (14), 4544. doi: 10.1021/jp811293n

    25. [25]

      (25) Xiao, D.; Rajian, J. R.; Cady, A.; Li, S.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2007, 111 (18), 4669. doi: 10.1021/jp066481b

    26. [26]

      (26) Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 110 (31), 9775. doi: 10.1021/jp054054c

    27. [27]

      (27) Wang, X. H.; Tao, G. H.; Wu, X. M.; Kou, Y. Acta Phys. -Chim. Sin. 2005, 21 (5), 528. [王晓化, 陶国宏, 吴晓牧, 寇元. 物理化学学报, 2005, 21 (5), 528.] doi: 10.3866/PKU.WHXB 20050514

    28. [28]

      (28) Lopes, J. N. C.; mes, M. F. C.; Padua, A. A. H. J. Phys. Chem. B 2006, 110 (34), 16816. doi: 10.1021/jp063603r

    29. [29]

      (29) Sajadi, M.; Ernsting, N. P. J. Phys. Chem. B 2013, 117, 7675. doi: 10.1021/jp400473n

    30. [30]

      (30) Mei, Q. Q.; Hou, M. Q.; Ning, H.; Ma, J.; Yang, D. Z.; Han, B. X. Acta Phys. -Chim. Sin. 2014, 30 (12), 2210. [梅清清, 侯民强, 宁汇, 马珺, 杨德重, 韩布兴. 物理化学学报, 2014, 30 (12), 2210.] doi: 10.3866/PKU.WHXB201410151

    31. [31]

      (31) Song, D. Y.; Chen, J. Acta Phys. -Chim. Sin. 2014, 30 (9), 1605. [宋大勇, 陈静. 物理化学学报, 2014, 30 (9), 1605.] doi: 10.3866/PKU.WHXB201407012

    32. [32]

      (32) Wang, Y. T.; Voth, G. A. J. Am. Chem. Soc. 2005, 127 (35), 12192. doi: 10.1021/ja053796g

    33. [33]

      (33) Zhu, G. L.; Wang, Y.; Zhang, L. W.; Liu, Y. C.; Wu, G. Z. Acta Phys. -Chim. Sin. 2015, 31 (3), 419. [朱光来, 王玉, 张良伟, 刘艳成, 吴国忠. 物理化学学报, 2015, 31 (3), 419.] doi: 10.3866/PKU.WHXB201501222

    34. [34]

      (34) Zhang, X. X.; Liang, M.; Ernsting, N. P.; Maroncelli, M. J. Phys. Chem. B 2013, 117 (16), 4291. doi: 10.1021/jp305430a

    35. [35]

      (35) Zhang, X. X.; Schroeder, C.; Ernsting, N. P. J. Chem. Phys. 2013, 138 (11), 111102. doi: 10.1063/1.4796198

    36. [36]

      (36) Ma, X. N.; Yan, L. Y.; Wang, X. F.; Guo, Q. J.; Xia, A. D. J. Phys. Chem. A 2011, 115 (27), 7937. doi: 10.1021/jp202391m

    37. [37]

      (37) Li, B.; Qiu, M.; Long, S.; Wang, X.; Guo, Q.; Xia, A. Phys. Chem. Chem. Phys. 2013, 15 (38), 16074. doi: 10.1039/c3cp52724g

    38. [38]

      (38) Li, B.; Wang, Y.; Wang, X.; Vdovic, S.; Guo, Q.; Xia, A. J. Phys. Chem. B 2012, 116 (44), 13272. doi: 10.1021/jp304914e

    39. [39]

      (39) Sarkar, A.; Trivedi, S.; Baker, G. A.; Pandey, S. J. Phys. Chem. B 2008, 112 (47), 14927. doi: 10.1021/jp804591q

    40. [40]

      (40) Paul, A.; Samanta, A. J. Phys. Chem. B 2008, 112 (51), 16626. doi: 10.1021/jp8060575

    41. [41]

      (41) Fei, Z. F.; Geldbach, T. J.; Zhao, D. B.; Dyson, P. J. Chem. -Eur. J. 2006, 12 (8), 2123. doi: 10.1002/chen.200500581

    42. [42]

      (42) Yue, C. B.; Fang, D.; Liu, L.; Yi, T. F. J. Mol. Liq. 2011, 163 (3), 99. doi: 10.1016/j.molliq.2011.09.001

    43. [43]

      (43) Chakrabarty, D.; Chakraborty, A.; Seth, D.; Hazra, P.; Sarkar, N. Chem. Phys. Lett. 2004, 397 (4–6), 469. doi: 10.1016/j.cplett.2004.08.141

    44. [44]

      (44) Chakrabarty, D.; Chakraborty, A.; Seth, D.; Sarkar, N. J. Phys. Chem. A 2005, 109 (9), 1764. doi: 10.1021/jp0460339

    45. [45]

      (45) Ito, N.; Arzhantsev, S.; Maroncelli, M. Chem. Phys. Lett. 2004, 396 (1–3), 83. doi: 10.1016/j.cplett.2004.08.018

    46. [46]

      (46) Baker, G. A.; Baker, S. N.; McCleskey, T. M. Chem. Commun. 2003, No. 23, 2932. doi: 10.1039/B310459C

    47. [47]

      (47) Fletcher, K. A.; Pandey, S. J. Phys. Chem. B 2003, 107 (48), 13532. doi: 10.1021/jp0276754

    48. [48]

      (48) Karmakar, R.; Samanta, A. Chem. Phys. Lett. 2003, 376 (5–6), 638. doi: 10.1016/S0009-2614(03)01040-6

    49. [49]

      (49) Pandey, S.; Fletcher, K. A.; Baker, S. N.; Baker, G. A. Analyst 2004, 129 (7), 569. doi: 10.1039/b402145m

    50. [50]

      (50) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006; pp 361–363.

    51. [51]

      (51) Smith, T. A.; Bajada, L. M.; Dunstan, D. E. Macromolecules 2002, 35 (7), 2736. doi: 10.1021/ma010954p

    52. [52]

      (52) Lee, K. C. B.; Siegel, J.; Webb, S. E. D.; Leveque-Fort, S.; Cole, M. J.; Jones, R.; Dowling, K.; Lever, M. J.; French, P. M. W. Biophys. J. 2001, 81 (3), 1265. doi: 10.1016/S0006-3495(01)75784-0

    53. [53]

      (53) Siqueira, L. J. A.; Ribeiro, M. C. C. J. Phys. Chem. B 2009, 113 (4), 1074. doi: 10.1021/jp807833a

    54. [54]

      (54) Ganapatibhotla, L.; Zheng, J. P.; Roy, D.; Krishnan, S. Chem. Mater. 2010, 22 (23), 6347. doi: 10.1021/cm102263s

    55. [55]

      (55) Jin, H.; Li, X.; Maroncelli, M. J. Phys. Chem. B 2007, 111 (48), 13473. doi: 10.1021/jp077226+


  • 加载中
    1. [1]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    17. [17]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(281)
  • Abstract views(392)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return