Citation:
SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1521-1526.
doi:
10.3866/PKU.WHXB201506081
-
Diamond-shaped carbon-coated CoCO3 (CoCO3/C) particles were prepared by a simple hydrothermal method, and carbon coating was realized using glucose as the carbon source. This study focuses on the electrochemical performance of CoCO3/C as an anode material. Its surface morphology and crystal lattice structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The content and structure of the carbon coating layer were further investigated by the thermogravimetry-differential thermal analysis (TG-DTA) technique and Raman spectroscopy. The pore size distribution was characterized using the Barrett-Joyner-Halenda (BJH) method. The results show that the carbon coating process creates not only a layer of amorphous carbon on the surface of CoCO3, but also a porous structure with pore size of ~30 nm. The amorphous carbon layer enhances the structural stability during the charging and discharging process, and the porous structure facilitates the movement of ions in the electrolyte, and thus improves its electrochemical performance. When the cycling performance was tested for 500 cycles, this CoCO3/C material maintained a capacity of 539 mAh·g-1 at 0.90C (1.00C = mAh·g-1), showing its excellent cycling capacity. When the current rate was increased to 3.00C, the capacity was 130 mAh·g-1. When the current rate was returned to 0.15C, its capacity was 770 mAh·g-1, demonstrating the great rate performance and stability of CoCO3/C.
-
-
-
[1]
(1) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29 (2), 293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29 (2), 293.]
-
[2]
(2) Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L. Q. Acta Phys. -Chim. Sin. 2011, 27 (1), 97. [陈仕玉, 王兆翔, 房向鹏, 赵海雷, 刘效疆, 陈立泉. 物理化学学报, 2011, 27 (1), 97.] doi: 10.3866/PKU.WHXB20110134
-
[3]
(3) He, P.; Yu, H. J.; Li, D.; Zhou, H. S. J. Mater. Chem. 2012, 22, 3680. doi: 10.1039/c2jm14305d
-
[4]
(4) Broussely, M.; Archdale, G. J. Power Sources 2004, 136 (2), 386. doi: 10.1016/j.jpowsour.2004.03.031
-
[5]
(5) Vu, A.; Qian, Y. Q.; Stein, A. Adv. Energy Mater. 2012, 2 (9), 1056. doi: 10.1002/aenm.v2.9
-
[6]
(6) Shi, S. Q.; Zhang, H.; Ke, X. Z.; Ouyang, C. Y.; Lei, M. S.; Chen, L. Q. Phys. Lett. A 2009, 373 (44), 4096. doi: 10.1016/j.physleta.2009.09.014
-
[7]
(7) Ouyang, C. Y.; Du, Y. L.; Shi, S. Q.; Lei, M. S. Phys. Lett. A 2009, 373 (31), 2796. doi: 10.1016/j.physleta.2009.05.071
-
[8]
(8) Xu, J. B.; Gao, P.; Zhao, T. S. Energy Environ. Sci. 2012, 5, 5333. doi: 10.1039/C1EE01431E
-
[9]
(9) Yang, W. C.; Bi, Y. J.; Yang, B. C.; Wang, D. Y.; Shi, S. Q. Acta Phys. -Chim. Sin. 2014, 30 (3), 460. [杨文超, 毕玉敬, 杨邦成, 王德宇, 施思齐. 物理化学学报, 2014, 30(3), 460.] doi: 10.3866/PKU.WHXB201401074
-
[10]
(10) Li, C. C.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Chem. Mater. 2009, 21 (20), 4984. doi: 10.1021/cm902126w
-
[11]
(11) Luo, Y.; Luo, J.; Zhou, W.; Qi, X.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. J. Mater. Chem. A 2013, 1, 273. doi: 10.1039/C2TA00064D
-
[12]
(12) Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X. W. Nanoscale 2012, 4, 2145. doi: 10.1039/c2nr11897a
-
[13]
(13) Ren, Z. X.; Liu, T.; Sun, L. N.; Zhang, P. X.; Liu, J. H.; Zhang, Q. L. Acta Phys. -Chim. Sin. 2014, 31 (3), 1641. [任祥忠, 刘涛, 孙灵娜, 张培新, 刘剑洪, 张黔玲. 物理化学学报, 2014, 31 (3), 1641.] doi: 10.3866/PKU.WHXB201406172
-
[14]
(14) Xiong, Q. Q.; Xia, X. H.; Tu, J. P.; Chen, J.; Zhang, Y. Q.; Zhou, D.; Gu, C. D.; Wang, X. L. J. Power Sources 2013240, 344. doi: 10.1016/j.jpowsour.2013.04.042
-
[15]
(15) Aragón, M. J.; Pérez-Vicente, C.; Tirado, J. L. Electrochem. Commumn. 2007, 9 (7), 1744. doi: 10.1016/j.elecom.2007.03.031
-
[16]
(16) Mirhashemihaghighi, S.; León, B.; Vicente, P. C.; Tirado, J. L.; Stoyanova, R.; Yoncheva, M.; Zhecheva, E.; Puche, R. S.; Arroyo, E. M.; Romero de Paz, J. Inorg. Chem.2012, 51 (10), 5554. doi: 10.1021/ic3004382
-
[17]
(17) Su, L. W.; Zhou, Z.; Qin, X.; Tang, Q. W.; Wu, D. H.; Shen P. W. Nano Energy 2013, 2 (2), 276. doi: 10.1016/j. nanoen.2012.09.012
-
[18]
(18) Ding, Z. J.; Yao, B.; Feng, J. K.; Zhang, J. X. J. Mater. Chem. A 20131, 11200. doi: 10.1039/c3ta12227a
-
[19]
(19) Eshkenazi, V.; Peled, E.; Burstein, L.; lodnitsky, D. Solid State Ionics 2004, 170 (1-2), 83. doi: 10.1016/S0167-2738(03)00107-3
-
[20]
(20) Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. Adv. Mater. 2009, 21 (25-26), 2710. doi: 10.1002/adma.v21:25/26
-
[21]
(21) Wang, G. X.; Liu, H.; Liu, J.; Qiao, S. Z.; Lu, G. Q. M.; Munroe, P.; Ahn, H. J. Adv. Mater. 2010, 22 (44), 4944. doi: 10.1002/adma.v22.44
-
[22]
(22) Belharouak, I.; Johnson, C.; Amine, K. Electrochem. Commum. 2005, 7 (10), 983. doi: 10.1016/j.elecom.2005.06.019
-
[23]
(23) Zhao, S. Q.; Yu, Y.; Wei, S. S.; Wang, Y. X.; Zhao, C. H.; Liu, R.; Shen, Q. J. Power Sources 2014, 253, 251.
-
[24]
(24) Su, L. W.; Zhou, Z.; Shen, P. W. Electrochim. Acta 2013, 87, 180. doi: 10.1016/j.electacta.2012.09.003
-
[25]
(25) Ang, W. A.; Gupta, N.; Prasanth, R.; Madhavi, S. ACS Appl. Mater. Interfaces 2012, 4 (12), 7011. doi: 10.1021/am3022653
-
[26]
(26) Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. Electrochem. Soc. 2002, 149 (5), A627.
-
[27]
(27) Liu, J. Z.; Ni, J. F.; Zhao, Y.; Wang, H. B.; Gao, L. J. J. Mater. Chem. A 2013, 1, 12879. doi: 10.1039/c3ta13141f
-
[28]
(28) Ma, R. G.; He, L. F.; Lu, Z. G.; Yang, S. L.; Xi, L. J.; Chung, J. C. CrystEngComm 2012, 14, 7882. doi: 10.1039/c2ce26041g
-
[29]
(29) Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, H. K.; Dou, S. X. Electrochim. Acta 2005, 50 (18), 3667. doi: 10.1016/j.electacta.2005.01.012
-
[30]
(30) Ponrouch, A.; Taberna, P. L.; Simon, P.; Pala??n, M. R. Electrochim. Acta 2012, 61, 13. doi: 10.1016/j.electacta.2011.11.029
-
[1]
-
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[4]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[5]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[6]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[7]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[8]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[9]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[10]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[11]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[12]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[13]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[14]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[15]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[18]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[19]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[20]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[1]
Metrics
- PDF Downloads(300)
- Abstract views(611)
- HTML views(43)