Citation: SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1521-1526. doi: 10.3866/PKU.WHXB201506081
-
Diamond-shaped carbon-coated CoCO3 (CoCO3/C) particles were prepared by a simple hydrothermal method, and carbon coating was realized using glucose as the carbon source. This study focuses on the electrochemical performance of CoCO3/C as an anode material. Its surface morphology and crystal lattice structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The content and structure of the carbon coating layer were further investigated by the thermogravimetry-differential thermal analysis (TG-DTA) technique and Raman spectroscopy. The pore size distribution was characterized using the Barrett-Joyner-Halenda (BJH) method. The results show that the carbon coating process creates not only a layer of amorphous carbon on the surface of CoCO3, but also a porous structure with pore size of ~30 nm. The amorphous carbon layer enhances the structural stability during the charging and discharging process, and the porous structure facilitates the movement of ions in the electrolyte, and thus improves its electrochemical performance. When the cycling performance was tested for 500 cycles, this CoCO3/C material maintained a capacity of 539 mAh·g-1 at 0.90C (1.00C = mAh·g-1), showing its excellent cycling capacity. When the current rate was increased to 3.00C, the capacity was 130 mAh·g-1. When the current rate was returned to 0.15C, its capacity was 770 mAh·g-1, demonstrating the great rate performance and stability of CoCO3/C.
-
-
[1]
(1) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29 (2), 293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29 (2), 293.]
-
[2]
(2) Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L. Q. Acta Phys. -Chim. Sin. 2011, 27 (1), 97. [陈仕玉, 王兆翔, 房向鹏, 赵海雷, 刘效疆, 陈立泉. 物理化学学报, 2011, 27 (1), 97.] doi: 10.3866/PKU.WHXB20110134
-
[3]
(3) He, P.; Yu, H. J.; Li, D.; Zhou, H. S. J. Mater. Chem. 2012, 22, 3680. doi: 10.1039/c2jm14305d
-
[4]
(4) Broussely, M.; Archdale, G. J. Power Sources 2004, 136 (2), 386. doi: 10.1016/j.jpowsour.2004.03.031
-
[5]
(5) Vu, A.; Qian, Y. Q.; Stein, A. Adv. Energy Mater. 2012, 2 (9), 1056. doi: 10.1002/aenm.v2.9
-
[6]
(6) Shi, S. Q.; Zhang, H.; Ke, X. Z.; Ouyang, C. Y.; Lei, M. S.; Chen, L. Q. Phys. Lett. A 2009, 373 (44), 4096. doi: 10.1016/j.physleta.2009.09.014
-
[7]
(7) Ouyang, C. Y.; Du, Y. L.; Shi, S. Q.; Lei, M. S. Phys. Lett. A 2009, 373 (31), 2796. doi: 10.1016/j.physleta.2009.05.071
-
[8]
(8) Xu, J. B.; Gao, P.; Zhao, T. S. Energy Environ. Sci. 2012, 5, 5333. doi: 10.1039/C1EE01431E
-
[9]
(9) Yang, W. C.; Bi, Y. J.; Yang, B. C.; Wang, D. Y.; Shi, S. Q. Acta Phys. -Chim. Sin. 2014, 30 (3), 460. [杨文超, 毕玉敬, 杨邦成, 王德宇, 施思齐. 物理化学学报, 2014, 30(3), 460.] doi: 10.3866/PKU.WHXB201401074
-
[10]
(10) Li, C. C.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Chem. Mater. 2009, 21 (20), 4984. doi: 10.1021/cm902126w
-
[11]
(11) Luo, Y.; Luo, J.; Zhou, W.; Qi, X.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. J. Mater. Chem. A 2013, 1, 273. doi: 10.1039/C2TA00064D
-
[12]
(12) Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X. W. Nanoscale 2012, 4, 2145. doi: 10.1039/c2nr11897a
-
[13]
(13) Ren, Z. X.; Liu, T.; Sun, L. N.; Zhang, P. X.; Liu, J. H.; Zhang, Q. L. Acta Phys. -Chim. Sin. 2014, 31 (3), 1641. [任祥忠, 刘涛, 孙灵娜, 张培新, 刘剑洪, 张黔玲. 物理化学学报, 2014, 31 (3), 1641.] doi: 10.3866/PKU.WHXB201406172
-
[14]
(14) Xiong, Q. Q.; Xia, X. H.; Tu, J. P.; Chen, J.; Zhang, Y. Q.; Zhou, D.; Gu, C. D.; Wang, X. L. J. Power Sources 2013240, 344. doi: 10.1016/j.jpowsour.2013.04.042
-
[15]
(15) Aragón, M. J.; Pérez-Vicente, C.; Tirado, J. L. Electrochem. Commumn. 2007, 9 (7), 1744. doi: 10.1016/j.elecom.2007.03.031
-
[16]
(16) Mirhashemihaghighi, S.; León, B.; Vicente, P. C.; Tirado, J. L.; Stoyanova, R.; Yoncheva, M.; Zhecheva, E.; Puche, R. S.; Arroyo, E. M.; Romero de Paz, J. Inorg. Chem.2012, 51 (10), 5554. doi: 10.1021/ic3004382
-
[17]
(17) Su, L. W.; Zhou, Z.; Qin, X.; Tang, Q. W.; Wu, D. H.; Shen P. W. Nano Energy 2013, 2 (2), 276. doi: 10.1016/j. nanoen.2012.09.012
-
[18]
(18) Ding, Z. J.; Yao, B.; Feng, J. K.; Zhang, J. X. J. Mater. Chem. A 20131, 11200. doi: 10.1039/c3ta12227a
-
[19]
(19) Eshkenazi, V.; Peled, E.; Burstein, L.; lodnitsky, D. Solid State Ionics 2004, 170 (1-2), 83. doi: 10.1016/S0167-2738(03)00107-3
-
[20]
(20) Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. Adv. Mater. 2009, 21 (25-26), 2710. doi: 10.1002/adma.v21:25/26
-
[21]
(21) Wang, G. X.; Liu, H.; Liu, J.; Qiao, S. Z.; Lu, G. Q. M.; Munroe, P.; Ahn, H. J. Adv. Mater. 2010, 22 (44), 4944. doi: 10.1002/adma.v22.44
-
[22]
(22) Belharouak, I.; Johnson, C.; Amine, K. Electrochem. Commum. 2005, 7 (10), 983. doi: 10.1016/j.elecom.2005.06.019
-
[23]
(23) Zhao, S. Q.; Yu, Y.; Wei, S. S.; Wang, Y. X.; Zhao, C. H.; Liu, R.; Shen, Q. J. Power Sources 2014, 253, 251.
-
[24]
(24) Su, L. W.; Zhou, Z.; Shen, P. W. Electrochim. Acta 2013, 87, 180. doi: 10.1016/j.electacta.2012.09.003
-
[25]
(25) Ang, W. A.; Gupta, N.; Prasanth, R.; Madhavi, S. ACS Appl. Mater. Interfaces 2012, 4 (12), 7011. doi: 10.1021/am3022653
-
[26]
(26) Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. Electrochem. Soc. 2002, 149 (5), A627.
-
[27]
(27) Liu, J. Z.; Ni, J. F.; Zhao, Y.; Wang, H. B.; Gao, L. J. J. Mater. Chem. A 2013, 1, 12879. doi: 10.1039/c3ta13141f
-
[28]
(28) Ma, R. G.; He, L. F.; Lu, Z. G.; Yang, S. L.; Xi, L. J.; Chung, J. C. CrystEngComm 2012, 14, 7882. doi: 10.1039/c2ce26041g
-
[29]
(29) Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, H. K.; Dou, S. X. Electrochim. Acta 2005, 50 (18), 3667. doi: 10.1016/j.electacta.2005.01.012
-
[30]
(30) Ponrouch, A.; Taberna, P. L.; Simon, P.; Pala??n, M. R. Electrochim. Acta 2012, 61, 13. doi: 10.1016/j.electacta.2011.11.029
-
[1]
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[7]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[8]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[9]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[12]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[13]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[14]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[15]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[16]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[17]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[19]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[20]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[1]
Metrics
- PDF Downloads(300)
- Abstract views(561)
- HTML views(41)