Citation: HE Xi, TANG Tong-Dan, YI Jun, LIU Bi-Ju, WANG Fang-Fang, REN Bin, ZHOU Jian-Zhang. Spherical Au@Ag Nanoparticles for Localized Surface Plasmon Resonance Scanning Probes: Synthesis and Dielectric Sensitivity[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1575-1583. doi: 10.3866/PKU.WHXB201506041 shu

Spherical Au@Ag Nanoparticles for Localized Surface Plasmon Resonance Scanning Probes: Synthesis and Dielectric Sensitivity

  • Received Date: 19 March 2015
    Available Online: 4 June 2015

    Fund Project: 国家自然科学基金(21273182, 21321062, 512053333)资助项目 (21273182, 21321062, 512053333)

  • The detection sensitivity of localized surface plasmon resonance (LSPR) microscopic probes is mainly determined by the LSPR property of the modified metal nanoparticle at the end of the probe. In this paper, spherical Au@Ag nanoparticles (NPs) with od size uniformity and a thick Ag shell (≥10 nm) were synthesized using the anion-assisted one-step synthesis method in aqueous solution, and the thickness of the Ag shell can be controlled by simply adjusting the molar ratio of Au to Ag in the solution. We characterized the morphology and composition of Au@Ag NPs with different core-shell ratios by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) line scanning analyses, which confirmed the controllable synthesis of Au@Ag core-shell NPs by this method. Measurement of the dielectric sensitivity of Au@Ag NPs with different core-shell ratios in different refractive index solutions showed that the core-shell nanostructure of 7.5 nm Au@28 nm Ag has the highest figure of merit for detection. Further investigation of the plasmonic properties of a single Au@Ag NP on nonconductive substrates with different refractive indexes confirmed that 7.5 nm Au@28 nm Ag NPs are one of the most suitable candidates for dielectric sensing in LSPR microscopy among the spherical Au@Ag NPs.

  • 加载中
    1. [1]

      (1) Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267. doi: 10.1146/annurev.physchem. 58.032806.104607

    2. [2]

      (2) Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828. doi: 10.1021/cr100313v

    3. [3]

      (3) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442. doi: 10.1038/nmat2162

    4. [4]

      (4) Li, Y.; Jing, C.; Zhang, L.; Long, Y. T. Chem. Soc. Rev. 2012, 41, 632. doi: 10.1039/c1cs15143f

    5. [5]

      (5) Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R. Science 2012, 337, 1072. doi: 10.1126/science. 1224823

    6. [6]

      (6) Tian, Z. Q.; Wang, F. F.; Zhan, D. P.; Zhou, J. Z. Tip Enhanced Dark Field Microscopy, Electrochemical System and Leveling Device. CN Patent 102798735A, 2012-11-28. [田中群, 王芳芳, 詹东平, 周剑章. 针尖增强暗场显微镜、电化学测试装置和调平系统: 中国, CN102798735A[P]. 2012-11-28.]

    7. [7]

      (7) Chen, H. J.; Kou, X. S.; Yang, Z.; Ni, W. H.; Wang, J. F. Langmuir 2008, 24 (10), 5233. doi: 10.1021/la800305j

    8. [8]

      (8) Awada, C.; Popescu, T.; Douillard, L.; Charra, F.; Perron, A.; Yockell-Lelièvre, H.; Baudrion, A. L.; Adam, P. M.; Bachelot, R. J. Phys. Chem. C 2012, 116 (27), 14591. doi: 10.1021/jp303475c

    9. [9]

      (9) Knight, M. W.; Wu, Y. P.; Lassiter, J. B.; Nordlander, P.; Halas, N. J. Nano Lett. 2009, 9 (5), 2188. doi: 10.1021/nl900945q

    10. [10]

      (10) Young, M. A.; Die ringer, J. A.; Van Duyne, R. P. Plasmonic Materials for Surface-Enhanced and Tip-Enhanced Raman Spectroscopy. In Tip Enhancement; Kawata, S., Shalaev, V. M. Eds.; 1st ed. Elsevier Science Ltd.: Amsterdam, the Netherlands, 2007; pp 3-4.

    11. [11]

      (11) Ziegler, C.; Eychmüller, A. J. Phys. Chem. C 2011, 115 (11), 4502. doi: 10.1021/jp1106982

    12. [12]

      (12) Evanoff, D. D., Jr.; Chumanov, G. J. Phys. Chem. B 2004, 108 (37), 13948. doi: 10.1021/jp047565s

    13. [13]

      (13) Liu, B. J.; Lin, K. Q.; Hu, S.; Wang, X.; Lei, Z. C.; Lin, H. X.; Ren, B. Anal. Chem. 2015, 87 (37), 1058. doi: 10.1021/ac503612b

    14. [14]

      (14) West, P. R.; Ishii, S.; Naik, G.; Emani, N.; Shalaev, V. M.; Boltasseva, A. Laser & Photonics Reviews 2010, 4 (6), 1. doi: 10.1002/lpor.200900055

    15. [15]

      (15) Johnson, P. B.; Christy, R. W. Phys. Rev. B 1972, 6 (12), 4370.

    16. [16]

      (16) Jakab, A.; Rosman, C.; Khalavka, Y.; Becker, J.; Trügler, A.; Hohenester, U.; Sönnichsen, C. ACS Nano 2011, 5 (9), 6880. doi: 10.1021/nn200877b

    17. [17]

      (17) Sun, Y. G. Chem. Soc. Rev. 2013, 42, 2497. doi: 10.1039/c2cs35289c

    18. [18]

      (18) Li, H. S.; Xia, H. B.; Ding, W. C.; Li, Y. J.; Shi, Q. R.; Wang, D. Y.; Tao, X. T. Langmuir 2014, 30 (9), 2498. doi: 10.1021/la4047148

    19. [19]

      (19) Sondi, I.; ia, D. V.; Matijevi?, E. J. Colloid Interf. Sci. 2003, 260 (1), 75. doi: 10.1016/S0021-9797(02)00205-9

    20. [20]

      (20) Paná?ek, A.; Kvítek, L.; Prucek, R.; Kolá?, M.; Ve?e?ová, R.; Pizúrová, N.; Sharma, V. K.; Nevě?ná, T.; Zbo?il, R. J. Phys. Chem. B 2006, 110 (33), 16248. doi: 10.1021/jp063826h

    21. [21]

      (21) Frens, G. Nature 1973, 241, 20. doi: 10.1038/physci241020a0

    22. [22]

      (22) Sqalli, O.; Bernal, M. P.; Hoffmann, P.; Marquis-Weible, F. Appl. Phys. Lett. 2000, 76, 2134. doi: 10.1063/1.126277

    23. [23]

      (23) Zhang, X.; Wang, H.; Su, Z. H. Langmuir 2012, 28 (44), 15705. doi: 10.1021/la303320z

    24. [24]

      (24) Liu, B. H.; Han, G. M.; Zhang, Z. P.; Liu, R. Y.; Jiang, C. L.; Wang, S. H.; Han, M. Y. Anal. Chem. 2011, 84 (1), 255. doi: 10.1021/ac202452t

    25. [25]

      (25) Lim, D. K.; Kim, I. J.; Nam, J. M. Chem. Commun. 2008, 42, 5312. doi: 10.1039/b810195g

    26. [26]

      (26) Rodríguez- nzález, B.; Burrows, A.; Watanabe, M.; Kiely, C. J.; Liz-Marzán, L. M. J. Mater. Chem. 2005, 15, 1755.

    27. [27]

      (27) Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Langmuir 2013, 29 (48), 15076. doi: 10.1021/la403707j

    28. [28]

      (28) Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3 (4), 485. doi: 10.1021/nl0340475

    29. [29]

      (29) Sun, Y. G.; Xia, Y. N. Anal. Chem. 2002, 74 (20), 5297. doi: 10.1021/ac0258352

    30. [30]

      (30) Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. N. Nano Lett. 2005, 5 (10), 2034. doi: 10.1021/nl0515753


  • 加载中
    1. [1]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    2. [2]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    10. [10]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    11. [11]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    20. [20]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

Metrics
  • PDF Downloads(349)
  • Abstract views(530)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return