Citation: CHEN Rong, ZHOU Wo-Hua, WU Zi-Wen, XU Xuan, XU Zhi-Guang. Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1683-1689. doi: 10.3866/PKU.WHXB201506031 shu

Theoretical Study on the Structures and Magnetic Properties of Metal String Complexes [Ni3(L)4(NCS)2] (L = dpa-, mpta-, mdpa-, mppa-)

  • Received Date: 16 February 2015
    Available Online: 3 June 2015

    Fund Project: 广东省自然科学基金(S2012010008763) (S2012010008763) 广东省教育部产学研项目(2010B090400184) (2010B090400184)广州市科技攻关项目(2011J4300063)资助 (2011J4300063)

  • Density functional theory at the BP86 level and natural bond orbital theory were used to investigate the influence of bridging ligands on the Ni―Ni interactions and magnetic coupling properties of metal string complexes [Ni3(L)4(NCS)2] (L = 1: dpa- (dipyridylamine), 2: mpta- (4-methylpyridyl-thiazolylamine), 3: mdpa- (4-methyl-dipyridylamine), 4: mppa-(4-methylpyridyl-3H-pyrrolylamine)) with potential applications in molecular wires. The following conclusions can be drawn. (1) The ground states of the complexes are antiferromagnetic (AF) singlet states, which correspond to the quintet state (HS). The energy and structure of HS is similar to AF. There are three-center-four-electron σ bonds (σ2σnb1σ*1) along the Ni36+ chains. (2) The Ni―Ni and Ni―N distances are unaffected by methyl substituents on the pyridine ring of dpa- ligands. However, substitution of the 3H-pyrrole ring or thiazole ring by the pyridine ring in mdpa- lengthens the N1―N2 and Ni―Ni distances but shortens the Ni2―N2 distance. These effects of the thiazole ring are weaker than those of the 3H-pyrrole ring. Therefore, the strength of the Ni―Ni interaction is 13 > 2 > 4. (3) The predicted Jab values of 3 and 4 are -103 and -88 cm-1, respectively. The AF magnetic coupling effects of the complexes increase with increasing Ni―Ni interaction strength: the stronger the Ni―Ni interaction, the greater the direct magnetic coupling in the σ orbitals along the Ni36+ chains. In addition, the stronger the Ni2―N2 interaction, the larger the indirect magnetic coupling involving the bridging ligand. The direct magnetic coupling is stronger than the indirect magnetic coupling.

  • 加载中
    1. [1]

      (1) Luo, K. G.; Tan, Y.; Xu, X.; Xu, Z. G. Inorg. Chim. Acta 2014, 421, 310. doi: 10.1016/j.ica.2014.06.003

    2. [2]

      (2) Berry, J. F.; Cotton, F. A.; Murillo, C. A.; Roberts, B. K. Inorg. Chem. 2004, 43, 2277. doi: 10.1021/ic0354320

    3. [3]

      (3) Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M. Eur. J. Inorg. Chem. 1999, 1999 (8), 1243.

    4. [4]

      (4) Lai, S. Y.; Wang, C. C.; Chen, Y. H.; Lee, C. C.; Liu, Y. H.; Peng, S. M. J. Chin. Chem. Soc. 1999, 46, 477. doi: 10.1002/jccs.v46.3

    5. [5]

      (5) Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. J. Mag. Mag. Mater. 2000, 209, 80. doi: 10.1016/S0304-8853(99)00650-2

    6. [6]

      (6) Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Angew. Chem. Int. Edit. 2011, 50, 2045. doi: 10.1002/anie.v50.9

    7. [7]

      (7) Hurley, T. J.; Robinson, M. A. Inorg. Chem. 1968, 7 (1), 33. doi: 10.1021/ic50059a007

    8. [8]

      (8) Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1991, 993.

    9. [9]

      (9) Lin, S. Y.; Chen, I. W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.; Lin, T. W.; Chen, Y. H.; Peng, S. M. J. Phys. Chem. B 2004, 108, 959. doi: 10.1021/jp035415w

    10. [10]

      (10) Shieh, S. J.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew. Chem. Int. Edit. 1997, 36, 56.

    11. [11]

      (11) Cheng, M. C.; Liu, I. P. C.; Hsu, C. H.; Lee, G. H.; Chen, C. H.; Peng, S. M. Dalton Trans. 2012, 41, 3166. doi: 10.1039/c2dt11246a

    12. [12]

      (12) Clérac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. P. Inorg. Chem. 1999, 38, 2655. doi: 10.1021/ic990006t

    13. [13]

      (13) Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. P. Inorg. Chem. 2003, 42 (7), 2418. doi: 10.1021/ic0262740

    14. [14]

      (14) Kiehl, P.; Rohmer, M. M.; Bénard, M. Inorg. Chem. 2004, 43 (10), 3151. doi: 10.1021/ic040011j

    15. [15]

      (15) Cotton, F. A.; Lei, P.; Murillo, C. A. Inorg. Chim. Acta 2003, 351, 183. doi: 10.1016/S0020-1693(03)00112-9

    16. [16]

      (16) Cotton, F. A.; Chao, H.; Murillo, C. A.; Wang, Q. S. Dalton Trans. 2006, No. 45, 5416.

    17. [17]

      (17) Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Wang, R. R.; Liu, I. P. C.; Yeh, C. Y.; Peng, S. M. Dalton Trans. 2007, 21 (27), 2898.

    18. [18]

      (18) Yang, C. C.; Liu, I. P. C.; Hsu, Y. J.; Lee, G. H.; Chen, C. H.; Peng, S. M. Eur. J. Inorg. Chem. 2013, 2013 (2), 263. doi: 10.1002/ejic.201200934

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    20. [20]

      (20) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    21. [21]

      (21) Becke, A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098

    22. [22]

      (22) Perdew, J. P. Phys. Rev. 1986, B33, 8882; 1986, B34, 7406.

    23. [23]

      (23) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. J. Chem. Phys. 1989, 91, 1762. doi: 10.1063/1.457082

    24. [24]

      (24) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975

    25. [25]

      (25) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1; Theoretical Chemistry Institute, University of Wisconsin: Madison, 1996.

    26. [26]

      (26) Noodleman, L. J. Chem. Phys. 1981, 74 (10), 5737. doi: 10.1063/1.440939

    27. [27]

      (27) Kitagawa, Y.; Matsui, T.; Nakanishi, Y.; Shigeta, Y.; Kawakami, T.; Okumura, M.; Yamaguchi, K. Dalton Trans. 2013, 42, 16200. doi: 10.1039/c3dt51466h

    28. [28]

      (28) Lu, T. Multiwfn, Revision 3.3.5; Beijing Kein Research Center for Natural Sciences: Beijing, 2014.

    29. [29]

      (29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Pittsburgh, PA, 2009.

    30. [30]

      (30) Tan, Y.; Huang, X.; Xu, X.; Xu, Z. G. Chem. J. Chin. Univ. 2012, 33, 1278. [谭莹, 黄晓, 许旋, 徐志广. 高等学校化学学报, 2012, 33, 1278.]

    31. [31]

      (31) L?pez, X.; Bénard, M.; Rohmer, M. M. J. Mol. Struct. 2006, 777, 53. doi: 10.1016/j.theochem.2006.08.040


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    7. [7]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(290)
  • Abstract views(596)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return