Citation: ZHAO Jia, LIU Li-Feng, ZHANG Ying. Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1549-1558. doi: 10.3866/PKU.WHXB201506021 shu

Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity

  • Received Date: 16 February 2015
    Available Online: 2 June 2015

    Fund Project: 国家自然科学基金(21173141) (21173141)陕西省工业攻关项目(2011K08-14) (2011K08-14)教育部长江学者和创新团队发展计划滚动支持项目(IRT-14R33)资助 (IRT-14R33)

  • The core-shell type poly(styrene-N-isopropylacrylamide)/poly(N-isopropylacrylamide-co-3-methacryloxypropyltrimethoxysilane) (P(St-NIPAM)/P(NIPAM-co-MPTMS)) composite microgels with thermosensitivity were synthesized by two-step polymerization methods. Using P(St-NIPAM)/P(NIPAM-co-MPTMS) composite microgels modified by (3-mercaptopropyl) trimethoxysilane (MPS) as support material, Ag nanoparticles (AgNPs) were in-situ controllably synthesized using ethanol as a reducing regent. The structure, composition and properties of the prepared P(St-NIPAM)/P(NIPAM-co-MPTMS)-(SH)Ag composite materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fouriertransform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and UV-visible spectroscopy (UV-Vis). Additionally, the catalytic activity of the composite microgels was investigated using the reduction of 4-nitrophenol (4-NP) by NaBH4 as a model reaction. The results showed that the dispersity of the in situ formed AgNPs was greatly improved because of the confining effect of the organic-inorganic microgel network with mercapto groups. Although the thermosensitivity of the composite microgels decreased because of the PNIPAM segments separated by the inorganic networks formed by MPTMS, the composite microgels still showed excellent catalytic performance and thermosensitivity in modulating the catalytic activity of AgNPs. These findings are related to the following aspects. The separated PNIPAM segments are favorable for mass transfer, and the networks with mercapto groups allow control of the size and local distribution of the in situ formed AgNPs. The present results are significant for construction of functional nanoscale metal catalytic materials.

  • 加载中
    1. [1]

      (1) Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. Chem. Sus. Chem. 2009, 2 (1), 18. doi: 10.1002/cssc.v2:1

    2. [2]

      (2) Kowalczuk, A.; Trzcinska, R.; Trzebicka, B.; Müller, A. H. E.; Dworak, A.; Tsvetanov, C. B. Prog. Polym. Sci. 2014, 39 (1), 43. doi: 10.1016/j.progpolymsci.2013.10.004

    3. [3]

      (3) Wang, J.; Lu, A. H.; Li, M. R.; Zhang, W. P.; Chen, Y. S.; Tian, D. X.; Li, W. C. ACS Nano 2013, 7 (6), 4902. doi: 10.1021/nn401446p

    4. [4]

      (4) Qu, K. G.; Wu, L.; Ren, J. S.; Qu, X. G. ACS Appl. Mater. Interfaces 2012, 4 (9), 5001. doi: 10.1021/am301376m

    5. [5]

      (5) Zhang, X.; Su, Z. H. Adv. Mater. 2012, 24 (33), 4574. doi: 10.1002/adma.v24.33

    6. [6]

      (6) Geng, Q. R.; Du, J. Z. RSC Adv. 2014, 4 (32), 16425. doi: 10.1039/c4ra01866d

    7. [7]

      (7) Sahiner, N. Prog. Polym. Sci. 2013, 38 (9), 1329. doi: 10.1016/j.progpolymsci.2013.06.004

    8. [8]

      (8) Wang, S. P.; Zhang, J. N.; Yuan, P. F.; Sun, Q.; Jia, Y.; Yan, W. F.; Chen, Z. M.; Xu, Q. J. Mater. Sci. 2015, 50 (3), 1323. doi: 10.1007/s10853-014-8692-3

    9. [9]

      (9) Yao, T. J.; Wang, C. X.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B. J. Colloid Interface Sci. 2009, 338 (2), 573. doi: 10.1016/j.jcis.2009.05.001

    10. [10]

      (10) Das, S. K.; Khan, M. M. R.; Guha, A. K.; Naskar, N. Green Chem. 2013, 15 (9), 2548. doi: 10.1039/c3gc40310f

    11. [11]

      (11) Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. J. Mol. Catal. A: Chem. 2010, 320 (1-2), 97. doi: 10.1016/j.molcata.2010.01.010

    12. [12]

      (12) Wu, B. H.; Kuang, Y. J.; Zhang, X. H.; Chen, J. H. Nano Today 2011, 6 (1), 75. doi: 10.1016/j.nantod.2010.12.008

    13. [13]

      (13) Dong S. A.; Liu, F.; Hou, S. Q.; Pan, Z. F. Acta Chim. Sin. 2010, 68 (15), 1519. [董守安, 刘锋, 侯树谦, 潘再富. 化学学报, 2010, 68 (15), 1519.]

    14. [14]

      (14) Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279 (1), 1. doi: 10.1016/j.jcat.2010.12. 003

    15. [15]

      (15) Guo, Y. Q.; Sun, X. Y.; Liu, Y.; Wang, W.; Qiu, H. X.; Gao, J. P. Carbon 2012, 50 (7), 2513. doi: 10.1016/j.carbon.2012.01.074

    16. [16]

      (16) Hood, M. A.; Mari, M.; Muñoz-Espí, R. Materials 2014, 7 (5), 4057. doi: 10.3390/ma7054057

    17. [17]

      (17) Ma, Z.; Dai, S. Nano Res. 2011, 4 (1), 3. doi: 10.1007/s12274-010-0025-5

    18. [18]

      (18) Haruta, M.; Daté, M. Appl. Catal. A: Gen. 2001, 222 (1-2), 427. doi: 10.1016/S0926-860X(01)00847-X

    19. [19]

      (19) Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y. T.; Fan, C. H. Angew. Chem. Int. Edit. 2011, 50 (50), 11994. doi: 10.1002/anie.v50.50

    20. [20]

      (20) Lu, Y.; Mei, Y.; Ballauff, M. J. Phys. Chem. B 2006, 110 (9), 3930. doi: 10.1021/jp057149n

    21. [21]

      (21) Lu, Y.; Ballauff, M. Prog. Polym. Sci. 2011, 36 (6), 767. doi: 10.1016/j.progpolymsci.2010.12.003

    22. [22]

      (22) Döring, A.; Birnbaum, W.; Kuckling, D. Chem. Soc. Rev. 2013, 42 (17), 7391. doi: 10.1039/c3cs60031a

    23. [23]

      (23) Zhang, J. L.; Zhang, M. X.; Tang, K. J.; Verpoort, F.; Sun, T. L. Small 2014, 10 (1), 32. doi: 10.1002/smll.201300287

    24. [24]

      (24) Zhang, J. T.; Wei, G.; Keller, T. F.; Gallagher, H.; Stötzel, C.; Müller, F. A.; ttschaldt, M.; Schubert, U. S.; Jandt, K. D. Macromol. Mater. Eng. 2010, 295 (11), 1049. doi: 10.1002/mame.v295.11

    25. [25]

      (25) Liu, Y. Y.; Liu, X. Y.; Yang, J. M.; Lin, D. L.; Chen, X.; Zha, L. S. Colloids Surf. A: Physicochem. Eng. Aspects 2012, 393 (5), 105.

    26. [26]

      (26) Shi, S.; Zhang, L.; Wang, T.; Wang, Q. M.; Gao, Y.; Wang, N. Soft Matter 2013, 9 (46), 10966. doi: 10.1039/c3sm52303a

    27. [27]

      (27) Qi, J. J.; Lv, W. P.; Zhang, G. H.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Nanoscale 2013, 5 (14), 6275. doi: 10.1039/c3nr00395g

    28. [28]

      (28) Zhang, C. X.; Li, C.; Chen, Y. Y.; Zhang, Y. J. Mater. Sci. 2014, 49 (20), 6872. doi: 10.1007/s10853-014-8389-7

    29. [29]

      (29) Lu, Y.; Proch, S.; Schrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M. J. Mater. Chem. 2009, 19 (23), 3955. doi: 10.1039/b822673n

    30. [30]

      (30) Welsch, N.; Ballauff, M.; Lu, Y. Adv. Polym. Sci. 2011, 234, 129.

    31. [31]

      (31) Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X. H.; Ballauff, M.; Lu, Y. Angew. Chem. Int. Edit. 2012, 51 (9), 2229. doi: 10.1002/anie.201106515

    32. [32]

      (32) Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev. 2012, 41 (17), 5577. doi: 10.1039/c2cs35029g

    33. [33]

      (33) Zhang, J. T.; Liu, X. L.; Fahr, A.; Jandt, K. D. Colloid Polym. Sci. 2008, 286 (10), 1209. doi: 10.1007/s00396-008-1890-2

    34. [34]

      (34) Cao, Z.; Du, B. Y.; Chen, T. Y.; Nie, J. J.; Xu, J. T.; Fan, Z. Q. Langmuir 2008, 24 (22), 12771.

    35. [35]

      (35) Zhang, J. T.; Pan, C. J.; Keller, T.; Bhat, R.; ttschaldt, M.; Schubert, U. S.; Jandt, K. D. Macromol. Mater. Eng. 2009, 294 (6-7), 396. doi: 10.1002/mame.v294:6/7

    36. [36]

      (36) Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M. Chem. Mater. 2007, 19 (5), 1062. doi: 10.1021/cm062554s

    37. [37]

      (37) Zhang, X.; Yang, H. Y.; Zhao, X. J.; Wang, Y.; Zheng, N. F. Chin. Chem. Lett. 2014, 25 (6), 839. doi: 10.1016/j.cclet.2014.05.027

    38. [38]

      (38) Xu, H. X.; Suslick, K. S. Adv. Mater. 2010, 22 (10), 1078. doi: 10.1002/adma.200904199

    39. [39]

      (39) Leelavathi, A.; Rao, T. U. B.; Pradeep, T. Nanoscale Res. Lett. 2011, 6 (1), 123. doi: 10.1186/1556-276X-6-123

    40. [40]

      (40) Lv, M. L.; Li, G. L.; Li, C.; Chen, H. Q.; Zhang, Y. Acta Chim. Sin. 2011, 69 (20), 2385. [吕美丽, 李国梁, 李超, 陈慧强, 张颖. 化学学报, 2011, 69 (20), 2385.]

    41. [41]

      (41) Wang, M. Y.; Niu, R.; Huang, M.; Zhang, Y. Sci. Sin. Chim. 2015, 45 (1), 76. [王明月, 牛瑞, 黄敏, 张颖. 中国科学. 化学, 2015, 45 (1), 76.]

    42. [42]

      (42) Hao, M. M.; Li, C.; Yu, M.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29 (4), 785. [郝敏敏, 李晨, 余敏, 张颖. 物理化学学报, 2013, 29 (4), 785.] doi: 10.3866/PKU.WHXB201302042

    43. [43]

      (43) Zhang, F.; Wang, C. C. Colloid Polym. Sci. 2008, 286 (8-9), 889. doi: 10.1007/s00396-008-1842-x

    44. [44]

      (44) Pan, K. Y.; Liang, Y. F.; Pu, Y. C.; Hsu, Y. J.; Yeh, J. W.; Shih, H. C. Appl. Surf. Sci. 2014, 311 (30), 399.

    45. [45]

      (45) Wang, Y. P.; Yuan, T. K.; Li, Q. L.; Wang, L. P.; Gu, S. J.; Pei, X. W. Mater. Lett. 2005, 59 (14-15), 1736. doi: 10.1016/j.matlet.2005.01.048

    46. [46]

      (46) Petoral, R. M.; Yazdi, J. G. R.; Spetz, A. L.; Yakimova, R.; Uvdal, K. Appl. Phys. Lett. 2007, 90 (22), 223904. doi: 10.1063/1.2745641

    47. [47]

      (47) Oubaha, M.; Varma1, P. C. R.; Duffy, B.; Gasem, Z. M.; Hinder, S. J. Adv. Mater. Phys. Chem. 2014, 4 (5), 75. doi: 10.4236/ampc.2014.45010

    48. [48]

      (48) Teng, W.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. J. Mater. Chem. A 2013, 1 (32), 9060. doi: 10.1039/c3ta11254c

    49. [49]

      (49) Yin, P. G.; Chen, Y.; Jiang, L.; You, T. T.; Lu, X. Y.; Guo, L.; Yang, S. H. Macromol. Rapid Commun. 2011, 32 (13), 1000. doi: 10.1002/marc.v32.13

    50. [50]

      (50) Chen, J.; Xiao, P.; Gu, J. C.; Han, D.; Zhang, J. W.; Sun, A. H.; Wang, W. Q.; Chen, T. Chemr Commun. 2014, 50 (10), 1212. doi: 10.1039/C3CC47386D

    51. [51]

      (51) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Angew. Chemr. Int. Edit. 2006, 45 (5), 813. doi: 10.1002/anie.200502731


  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(385)
  • Abstract views(413)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return