Citation:
ZHAO Jia, LIU Li-Feng, ZHANG Ying. Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1549-1558.
doi:
10.3866/PKU.WHXB201506021
-
The core-shell type poly(styrene-N-isopropylacrylamide)/poly(N-isopropylacrylamide-co-3-methacryloxypropyltrimethoxysilane) (P(St-NIPAM)/P(NIPAM-co-MPTMS)) composite microgels with thermosensitivity were synthesized by two-step polymerization methods. Using P(St-NIPAM)/P(NIPAM-co-MPTMS) composite microgels modified by (3-mercaptopropyl) trimethoxysilane (MPS) as support material, Ag nanoparticles (AgNPs) were in-situ controllably synthesized using ethanol as a reducing regent. The structure, composition and properties of the prepared P(St-NIPAM)/P(NIPAM-co-MPTMS)-(SH)Ag composite materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fouriertransform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and UV-visible spectroscopy (UV-Vis). Additionally, the catalytic activity of the composite microgels was investigated using the reduction of 4-nitrophenol (4-NP) by NaBH4 as a model reaction. The results showed that the dispersity of the in situ formed AgNPs was greatly improved because of the confining effect of the organic-inorganic microgel network with mercapto groups. Although the thermosensitivity of the composite microgels decreased because of the PNIPAM segments separated by the inorganic networks formed by MPTMS, the composite microgels still showed excellent catalytic performance and thermosensitivity in modulating the catalytic activity of AgNPs. These findings are related to the following aspects. The separated PNIPAM segments are favorable for mass transfer, and the networks with mercapto groups allow control of the size and local distribution of the in situ formed AgNPs. The present results are significant for construction of functional nanoscale metal catalytic materials.
-
-
-
[1]
(1) Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. Chem. Sus. Chem. 2009, 2 (1), 18. doi: 10.1002/cssc.v2:1
-
[2]
(2) Kowalczuk, A.; Trzcinska, R.; Trzebicka, B.; Müller, A. H. E.; Dworak, A.; Tsvetanov, C. B. Prog. Polym. Sci. 2014, 39 (1), 43. doi: 10.1016/j.progpolymsci.2013.10.004
-
[3]
(3) Wang, J.; Lu, A. H.; Li, M. R.; Zhang, W. P.; Chen, Y. S.; Tian, D. X.; Li, W. C. ACS Nano 2013, 7 (6), 4902. doi: 10.1021/nn401446p
-
[4]
(4) Qu, K. G.; Wu, L.; Ren, J. S.; Qu, X. G. ACS Appl. Mater. Interfaces 2012, 4 (9), 5001. doi: 10.1021/am301376m
-
[5]
(5) Zhang, X.; Su, Z. H. Adv. Mater. 2012, 24 (33), 4574. doi: 10.1002/adma.v24.33
-
[6]
(6) Geng, Q. R.; Du, J. Z. RSC Adv. 2014, 4 (32), 16425. doi: 10.1039/c4ra01866d
-
[7]
(7) Sahiner, N. Prog. Polym. Sci. 2013, 38 (9), 1329. doi: 10.1016/j.progpolymsci.2013.06.004
-
[8]
(8) Wang, S. P.; Zhang, J. N.; Yuan, P. F.; Sun, Q.; Jia, Y.; Yan, W. F.; Chen, Z. M.; Xu, Q. J. Mater. Sci. 2015, 50 (3), 1323. doi: 10.1007/s10853-014-8692-3
-
[9]
(9) Yao, T. J.; Wang, C. X.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B. J. Colloid Interface Sci. 2009, 338 (2), 573. doi: 10.1016/j.jcis.2009.05.001
-
[10]
(10) Das, S. K.; Khan, M. M. R.; Guha, A. K.; Naskar, N. Green Chem. 2013, 15 (9), 2548. doi: 10.1039/c3gc40310f
-
[11]
(11) Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. J. Mol. Catal. A: Chem. 2010, 320 (1-2), 97. doi: 10.1016/j.molcata.2010.01.010
-
[12]
(12) Wu, B. H.; Kuang, Y. J.; Zhang, X. H.; Chen, J. H. Nano Today 2011, 6 (1), 75. doi: 10.1016/j.nantod.2010.12.008
-
[13]
(13) Dong S. A.; Liu, F.; Hou, S. Q.; Pan, Z. F. Acta Chim. Sin. 2010, 68 (15), 1519. [董守安, 刘锋, 侯树谦, 潘再富. 化学学报, 2010, 68 (15), 1519.]
-
[14]
(14) Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279 (1), 1. doi: 10.1016/j.jcat.2010.12. 003
-
[15]
(15) Guo, Y. Q.; Sun, X. Y.; Liu, Y.; Wang, W.; Qiu, H. X.; Gao, J. P. Carbon 2012, 50 (7), 2513. doi: 10.1016/j.carbon.2012.01.074
-
[16]
(16) Hood, M. A.; Mari, M.; Muñoz-Espí, R. Materials 2014, 7 (5), 4057. doi: 10.3390/ma7054057
-
[17]
(17) Ma, Z.; Dai, S. Nano Res. 2011, 4 (1), 3. doi: 10.1007/s12274-010-0025-5
-
[18]
(18) Haruta, M.; Daté, M. Appl. Catal. A: Gen. 2001, 222 (1-2), 427. doi: 10.1016/S0926-860X(01)00847-X
-
[19]
(19) Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y. T.; Fan, C. H. Angew. Chem. Int. Edit. 2011, 50 (50), 11994. doi: 10.1002/anie.v50.50
-
[20]
(20) Lu, Y.; Mei, Y.; Ballauff, M. J. Phys. Chem. B 2006, 110 (9), 3930. doi: 10.1021/jp057149n
-
[21]
(21) Lu, Y.; Ballauff, M. Prog. Polym. Sci. 2011, 36 (6), 767. doi: 10.1016/j.progpolymsci.2010.12.003
-
[22]
(22) Döring, A.; Birnbaum, W.; Kuckling, D. Chem. Soc. Rev. 2013, 42 (17), 7391. doi: 10.1039/c3cs60031a
-
[23]
(23) Zhang, J. L.; Zhang, M. X.; Tang, K. J.; Verpoort, F.; Sun, T. L. Small 2014, 10 (1), 32. doi: 10.1002/smll.201300287
-
[24]
(24) Zhang, J. T.; Wei, G.; Keller, T. F.; Gallagher, H.; Stötzel, C.; Müller, F. A.; ttschaldt, M.; Schubert, U. S.; Jandt, K. D. Macromol. Mater. Eng. 2010, 295 (11), 1049. doi: 10.1002/mame.v295.11
-
[25]
(25) Liu, Y. Y.; Liu, X. Y.; Yang, J. M.; Lin, D. L.; Chen, X.; Zha, L. S. Colloids Surf. A: Physicochem. Eng. Aspects 2012, 393 (5), 105.
-
[26]
(26) Shi, S.; Zhang, L.; Wang, T.; Wang, Q. M.; Gao, Y.; Wang, N. Soft Matter 2013, 9 (46), 10966. doi: 10.1039/c3sm52303a
-
[27]
(27) Qi, J. J.; Lv, W. P.; Zhang, G. H.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Nanoscale 2013, 5 (14), 6275. doi: 10.1039/c3nr00395g
-
[28]
(28) Zhang, C. X.; Li, C.; Chen, Y. Y.; Zhang, Y. J. Mater. Sci. 2014, 49 (20), 6872. doi: 10.1007/s10853-014-8389-7
-
[29]
(29) Lu, Y.; Proch, S.; Schrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M. J. Mater. Chem. 2009, 19 (23), 3955. doi: 10.1039/b822673n
-
[30]
(30) Welsch, N.; Ballauff, M.; Lu, Y. Adv. Polym. Sci. 2011, 234, 129.
-
[31]
(31) Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X. H.; Ballauff, M.; Lu, Y. Angew. Chem. Int. Edit. 2012, 51 (9), 2229. doi: 10.1002/anie.201106515
-
[32]
(32) Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev. 2012, 41 (17), 5577. doi: 10.1039/c2cs35029g
-
[33]
(33) Zhang, J. T.; Liu, X. L.; Fahr, A.; Jandt, K. D. Colloid Polym. Sci. 2008, 286 (10), 1209. doi: 10.1007/s00396-008-1890-2
-
[34]
(34) Cao, Z.; Du, B. Y.; Chen, T. Y.; Nie, J. J.; Xu, J. T.; Fan, Z. Q. Langmuir 2008, 24 (22), 12771.
-
[35]
(35) Zhang, J. T.; Pan, C. J.; Keller, T.; Bhat, R.; ttschaldt, M.; Schubert, U. S.; Jandt, K. D. Macromol. Mater. Eng. 2009, 294 (6-7), 396. doi: 10.1002/mame.v294:6/7
-
[36]
(36) Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M. Chem. Mater. 2007, 19 (5), 1062. doi: 10.1021/cm062554s
-
[37]
(37) Zhang, X.; Yang, H. Y.; Zhao, X. J.; Wang, Y.; Zheng, N. F. Chin. Chem. Lett. 2014, 25 (6), 839. doi: 10.1016/j.cclet.2014.05.027
-
[38]
(38) Xu, H. X.; Suslick, K. S. Adv. Mater. 2010, 22 (10), 1078. doi: 10.1002/adma.200904199
-
[39]
(39) Leelavathi, A.; Rao, T. U. B.; Pradeep, T. Nanoscale Res. Lett. 2011, 6 (1), 123. doi: 10.1186/1556-276X-6-123
-
[40]
(40) Lv, M. L.; Li, G. L.; Li, C.; Chen, H. Q.; Zhang, Y. Acta Chim. Sin. 2011, 69 (20), 2385. [吕美丽, 李国梁, 李超, 陈慧强, 张颖. 化学学报, 2011, 69 (20), 2385.]
-
[41]
(41) Wang, M. Y.; Niu, R.; Huang, M.; Zhang, Y. Sci. Sin. Chim. 2015, 45 (1), 76. [王明月, 牛瑞, 黄敏, 张颖. 中国科学. 化学, 2015, 45 (1), 76.]
-
[42]
(42) Hao, M. M.; Li, C.; Yu, M.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29 (4), 785. [郝敏敏, 李晨, 余敏, 张颖. 物理化学学报, 2013, 29 (4), 785.] doi: 10.3866/PKU.WHXB201302042
-
[43]
(43) Zhang, F.; Wang, C. C. Colloid Polym. Sci. 2008, 286 (8-9), 889. doi: 10.1007/s00396-008-1842-x
-
[44]
(44) Pan, K. Y.; Liang, Y. F.; Pu, Y. C.; Hsu, Y. J.; Yeh, J. W.; Shih, H. C. Appl. Surf. Sci. 2014, 311 (30), 399.
-
[45]
(45) Wang, Y. P.; Yuan, T. K.; Li, Q. L.; Wang, L. P.; Gu, S. J.; Pei, X. W. Mater. Lett. 2005, 59 (14-15), 1736. doi: 10.1016/j.matlet.2005.01.048
-
[46]
(46) Petoral, R. M.; Yazdi, J. G. R.; Spetz, A. L.; Yakimova, R.; Uvdal, K. Appl. Phys. Lett. 2007, 90 (22), 223904. doi: 10.1063/1.2745641
-
[47]
(47) Oubaha, M.; Varma1, P. C. R.; Duffy, B.; Gasem, Z. M.; Hinder, S. J. Adv. Mater. Phys. Chem. 2014, 4 (5), 75. doi: 10.4236/ampc.2014.45010
-
[48]
(48) Teng, W.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. J. Mater. Chem. A 2013, 1 (32), 9060. doi: 10.1039/c3ta11254c
-
[49]
(49) Yin, P. G.; Chen, Y.; Jiang, L.; You, T. T.; Lu, X. Y.; Guo, L.; Yang, S. H. Macromol. Rapid Commun. 2011, 32 (13), 1000. doi: 10.1002/marc.v32.13
-
[50]
(50) Chen, J.; Xiao, P.; Gu, J. C.; Han, D.; Zhang, J. W.; Sun, A. H.; Wang, W. Q.; Chen, T. Chemr Commun. 2014, 50 (10), 1212. doi: 10.1039/C3CC47386D
-
[51]
(51) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Angew. Chemr. Int. Edit. 2006, 45 (5), 813. doi: 10.1002/anie.200502731
-
[1]
-
-
-
[1]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[4]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[7]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[10]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[11]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[12]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[13]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[14]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[15]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[16]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(385)
- Abstract views(413)
- HTML views(11)