Citation: ZHANG Qiang, CHENG Cheng, ZHANG Xia, ZHAO Dong-Xia. Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1461-1467. doi: 10.3866/PKU.WHXB201506013 shu

Jump Rotational Mechanism of Ammonium Ion in Aqueous Solutions

  • Received Date: 17 April 2015
    Available Online: 1 June 2015

    Fund Project: 教育部留学回国人员科研启动基金(46批) (46批)国家自然科学基金(21473083)资助项目 (21473083)

  • The dynamic behavior of the ammonium ion is closely related to the biological and chemical processes of life. A fast rotation of NH4 in aqueous solution has been observed in previous experiments, which is unexpected from hydrodynamic theories because of the multiple strong hydrogen bonds (HBs) between ammonium ion and water. The mechanism behind this rotation is still not well understood. The simulations in this work show that a sudden and large-magnitude angular jump rotation occurs during the hydrogen bond exchange processes of the ammonium ion like water. The rotation of the ammonium ion can be approximately described with the extended jump model, and can be decomposed into two independent contributions: the jump rotation and the diffusive rotation of the HB frame. The rotational mobility of the ammonium ion is determined by fast jump rotation compared with the slow diffusive rotation. In addition, the contribution of the jump rotation increases with increasing NH4 concentration. Compared with water, NH4 prefers to exchange its HB between two water molecules without forming a HB each other.

  • 加载中
    1. [1]

      (1) Nostro, P. L.; Ninham, B. W. Chem. Rev. 2012, 112, 2286. doi: 10.1021/cr200271j

    2. [2]

      (2) Marcus, Y. Chem. Rev. 2009, 109, 1346. doi: 10.1021/cr8003828

    3. [3]

      (3) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157. doi: 10.1021/cr00019a014

    4. [4]

      (4) (a) Bakker, H. J.; Skinner, J. L. Chem. Rev. 2010, 110, 1498. doi: 10.1021/cr9001879

    5. [5]

      (b) Bakker, H. J. Chem. Rev. 2008, 108, 1456

    6. [6]

      (5) Marcus, Y.; Hefter, G. Chem. Rev. 2006, 106, 4585. doi: 10.1021/cr040087x

    7. [7]

      (6) Collins, K. D. Biophys. J. 1997, 72, 65. doi: 10.1016/S0006-3495(97)78647-8

    8. [8]

      (7) Mason, P. E.; Dempsey, C. E.; Vrbka, L.; Heyda, J.; Brady, J. W.; Jungwirth, P. J. Phys. Chem. B 2009, 113, 3227.

    9. [9]

      (8) (a) Yang, L. J.; Fan, Y. B.; Gao, Y. Q. J. Phys. Chem. B 2011, 115, 12456. doi: 10.1021/jp207652h

    10. [10]

      (b) Zhang, Q.; Xie, W.; Bian, H.; Gao, Y. Q.; Zheng, J.; Zhuang, W. J. Phys. Chem. B 2013, 117, 2992.

    11. [11]

      (9) Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247. doi: 10.1016/j.orgel.2008.12.008

    12. [12]

      (10) Heisler, I. A.; Mazur, K.; Meech, S. R. J. Phys. Chem. B 2011, 115, 1863. doi: 10.1007/BF01918191

    13. [13]

      (11) Engel, G.; Hertz, H. G. Ber. Bunsen.-Ges. Phys. Chem. 1968, 72, 808. doi: 10.1021/j100849a009

    14. [14]

      (12) Park, S.; Fayer, M. D. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16731. doi: 10.1073/pnas.0707824104

    15. [15]

      (13) Roberts, S. T.; Ramasesha, K.; Tokmakoff, A. Accoutns Chem. Res. 2009, 42, 1239. doi: 10.1021/ar900088g

    16. [16]

      (14) Laage, D.; Hynes, J. T. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 11167. doi: 10.1073/pnas.0701699104

    17. [17]

      (15) Stirnemann, G.; Wernersson, E.; Jungwirth, P.; Laage, D. J. Am. Chem. Soc. 2013, 135, 11824. doi: 10.1021/ja405201s

    18. [18]

      (16) Moberg, R.; Bokman, F.; Bohman, O.; Siegbahn, H. O. G. J. Am. Chem. Soc. 1991, 113, 3663. doi: 10.1021/ja00010a005

    19. [19]

      (17) Anderson, T. L.; Charlson, A. J.; Schwartz, S. E.; Knutti, R.; Boucher, O.; Rodhe, H.; Heintzenberg, J. Science 2003, 300, 1103. doi: 10.1126/science.1084777

    20. [20]

      (18) (a) Mason, P. E.; Heyda, J.; Fischer, H. E.; Jungwirth, P. J. Phys. Chem. B 2010, 114, 13853. doi: 10.1021/jp104840g

    21. [21]

      (b) Wang, S.; Orabi, E. A.; Baday, S.; Bernèche, S.; Lamoureux, G. J. Am. Chem. Soc. 2012, 134, 10419.

    22. [22]

      (c) Baday, S.; Wang, S.; Lamoureux, G.; Bernèche, S. Biochemistry 2013, 52, 7091.

    23. [23]

      (19) Perrin, C. L.; Gipe, R. K. J. Am. Chem. Soc. 1986, 108, 1088. doi: 10.1021/ja00265a044

    24. [24]

      (20) Perrin C. L.; Gipe, R. K. Science 1987, 238, 1393. doi: 10.1126/science.238.4832.1393

    25. [25]

      (21) Masuda, Y. J. Phys. Chem. A 2001, 105, 2989. doi: 10.1021/jp003300b

    26. [26]

      (22) Einstein, A. Investigations on the Theory of the Brownian Motion; Dover: New York, 1956.

    27. [27]

      (23) Karim, O. A.; Haymet, A. D. J. J. Chem. Phys. 1990, 93, 5961. doi: 10.1063/1.459479

    28. [28]

      (24) (a) Chang, T.; Dang, L. X. J. Chem. Phys. 2003, 118, 8813.

    29. [29]

      (b) Dang, L. X. Chem. Phys. Lett. 1993, 213, 541.

    30. [30]

      (25) Szasz, G.; Riede, W. O.; Heinzinger, K. Z. Naturforsch. A 1979, 34, 1083.

    31. [31]

      (26) Jorgensen, W. L.; Gao, J. J. Phys. Chem. 1986, 90, 2174. doi: 10.1021/j100401a037

    32. [32]

      (27) Jensen, K. P.; Jorgensen, W. L. J. Chem. Theory Comput. 2006, 2, 1499.

    33. [33]

      (28) Bruge, F.; Bernasconi, M.; Parrinello, M. J. Am. Chem. Soc. 1999, 121, 10883. doi: 10.1021/ja990520y

    34. [34]

      (29) Bruge, F.; Bernasconi, M.; Parrinello, M. J. Chem. Phys. 1999, 110, 4734. doi: 10.1063/1.478360

    35. [35]

      (30) Kassab, E.; Evleth, E. M.; Hamou-Tahra, Z. D. J. Am. Chem. Soc. 1990, 112, 103. doi: 10.1021/ja00157a016

    36. [36]

      (31) Babiaczyk, W. I.; Bonella, S.; Guidoni, L.; Ciccotti, G. J. Phys. Chem. B 2010, 114, 15018. doi: 10.1021/jp106282w

    37. [37]

      (32) (a) Laage, D.; Hynes, J. T. Science 2006, 311, 832. doi: 10.1126/science.1122154

    38. [38]

      (b) Laage, D.; Stirnemann, G.; Sterpone, F.; Hynes, J. T. Accoutns Chem. Res. 2012, 45, 53.

    39. [39]

      (33) Ivanov, E. N. Sov. Phys. JETP 1964, 18, 1041.

    40. [40]

      (34) Heyda, J.; Lund, M.; On?ák, M. Slaví?ek, P.; Jungwirth, P. J. Phys. Chem. B 2010, 114, 10843. doi: 10.1021/jp101393k

    41. [41]

      (35) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. doi: 10.1021/j100308a038

    42. [42]

      (36) Andersen, H. C. J. Comput. Phys. 1983, 52, 24. doi: 10.1016/0021-9991(83)90014-1

    43. [43]

      (37) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987.

    44. [44]

      (38) Nosé, S. Mol. Phys. 1984, 52, 255. doi: 10.1080/00268978400101201

    45. [45]

      (39) Hoover, W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695

    46. [46]

      (40) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Hauk, J. R. J. Chem. Phys. 1984, 81, 3684. doi: 10.1063/1.448118

    47. [47]

      (41) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. doi: 10.1063/1.464397

    48. [48]

      (42) Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1987, 8, 1016.

    49. [49]

      (43) Mazza, M. G.; Giovambattista, N.; Starr, F. W.; Stanley, H. E.; Phys. Rev. Lett. 2006, 96, 057803. doi: 10.1103/PhysRevLett.96.057803

    50. [50]

      (44) Hansen, J. P.; McDonald, I. R. Theory of Simple Liquids; Academic: London, 1986.

    51. [51]

      (45) Zasetsky, A. Y.; Petelina, S. V.; Lyashchenko, A. K.; Lileev, A. S. J. Chem. Phys. 2010, 133, 134502. doi: 10.1063/1.3486174

    52. [52]

      (46) (a) Zhang, X.; Zhang, Q.; Zhao, D. Acta Chim. Sin. 2012, 70, 365. [张霞, 张强, 赵东霞. 化学学报, 2012, 70, 365.]

    53. [53]

      (b) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2011, 27, 2547. [张霞, 张强, 赵东霞. 物理化学学报, 2011, 27, 2547.] doi: 10.3866/PKU.WHXB20111107

    54. [54]

      (47) Qvist, J.; Mattea, C.; Sunde, E. P.; Halleb, B. J. Chem. Phys. 2012, 136, 204505. doi: 10.1063/1.4720941


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    16. [16]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

Metrics
  • PDF Downloads(248)
  • Abstract views(760)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return