Citation: ZHAO Meng-Yao, YANG Xue-Ping, YANG Xiao-Ning. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1489-1498. doi: 10.3866/PKU.WHXB201506011
-
Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work, molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of 0.6-1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores (0.6-0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore. According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures.
-
Keywords:
-
Molecular simulation
, - Graphene,
- Water,
- Confined structure
-
-
-
[1]
(1) Pan, Y. S.; Birkedal, H.; Pattison, P.; Brown, D.; Chapuis, G. J. Phys. Chem. B 2004, 108 (20), 6458. doi: 10.1021/jp037219v
-
[2]
(2) Newsome, D. A.; Sholl, D. S. J. Phys. Chem. B 2005, 109 (15), 7239. doi: 10.1021/jp044247k
-
[3]
(3) Milischuk, A. A.; Ladanyi, B. M. J. Chem. Phys. 2011, 135 (17), 174709. doi: 10.1063/1.3657408
-
[4]
(4) Qiao, Y.; Xu, X.; Li, H. Appl. Phys. Lett. 2013, 103 (23), 233106. doi: 10.1063/1.4839255
-
[5]
(5) Han, S.; Choi, M. Y.; Kumar, P.; Stanley, H. E. Nat. Phys. 2010, 6 (9), 685. doi: 10.1038/nphys1708
-
[6]
(6) Du, F.; Qu, L. T.; Xia, Z. H.; Feng, L. F.; Dai, L. M. Langmuir 2011, 27 (13), 8437. doi: 10.1021/la200995r
-
[7]
(7) Strauss, I.; Chan, H.; Král, P. J. Am. Chem. Soc. 2014, 136 (4), 1170. doi: 10.1021/ja4087962
-
[8]
(8) Cicero, G.; Grossman, J. C.; Schwegler, E.; Gygi, F.; Galli, G. J. Am. Chem. Soc. 2008, 130 (6), 1871. doi: 10.1021/ja074418+
-
[9]
(9) Thomas, J. A.; McGaughey, A. J. H. Nano Lett. 2008, 8 (9), 2788. doi: 10.1021/nl8013617
-
[10]
(10) Mashl, R. J.; Joseph, S.; Aluru, N. R.; Jakobsson, E. Nano Lett. 2003, 3 (5), 589. doi: 10.1021/nl0340226
-
[11]
(11) Liu, Y. C.; Wang, Q.; Lü, L. H.; Zhang, L. Z. Acta Phys. -Chim. Sin. 2005, 21 (1), 63. [刘迎春, 王琦, 吕玲红, 章连众. 物理化学学报, 2005, 21 (1), 63.] doi: 10.3866/PKU.WHXB 20050113
-
[12]
(12) Iiyama, T.; Nishikawa, K.; Otowa, T.; Kaneko, K. J. Phys. Chem. 1995, 99 (25), 10075. doi: 10.1021/j100025a004
-
[13]
(13) Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Nature 2001, 412 (6849), 802. doi: 10.1038/35090532
-
[14]
(14) Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
-
[15]
(15) Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. ACS Nano 2010, 4 (7), 3979. doi: 10.1021/nn1008897
-
[16]
(16) Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k
-
[17]
(17) Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12 (7), 3602. doi: 10.1021/nl3012853
-
[18]
(18) Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU. WHXB20100812
-
[19]
(19) Chen, H. Q.; Müeller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma. 200800757
-
[20]
(20) Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3 (2), 101. doi: 10.1038/nnano. 2007.451
-
[21]
(21) Han, Y.; Xu, Z.; Gao, C. Adv. Funct. Mater. 2013, 23 (29), 3693. doi: 10.1002/adfm.v23.29
-
[22]
(22) Mi, B. X. Science 2014, 343 (6172), 740. doi: 10.1126/science.1250247
-
[23]
(23) Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Gri rieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343 (6172), 752. doi: 10.1126/science.1245711
-
[24]
(24) Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Gri rieva, I. V.; Geim, A. K. Science 2012, 335 (6067), 442. doi: 10.1126/science.1211694
-
[25]
(25) Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Xu, Z. P.; Zhu, H. W. ACS Nano 2013, 7 (1), 428. doi: 10.1021/nn304471w
-
[26]
(26) Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R. B.; Xu, Z. P.; Zhu, H. W. ACS Nano 2014, 8 (1), 850. doi: 10.1021/nn4055682
-
[27]
(27) Hu, M.; Mi, B. X. Environ. Sci. Technol. 2013, 47 (8), 3715. doi: 10.1021/es400571g
-
[28]
(28) Xu, L.; Hu, Y. Z.; Ma, T. B.; Wang, H. Nanotechnology 2013, 24 (50), 505504. doi: 10.1088/0957-4484/24/50/505504
-
[29]
(29) Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K.; Thiyagarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Phys. Rev. Lett. 2004, 93 (3), 035503. doi: 10.1103/PhysRevLett. 93.035503
-
[30]
(30) Fernández-Serra, M. V.; Artacho, E. Phys. Rev. Lett. 2006, 96 (1), 016404. doi: 10.1103/PhysRevLett.96.016404
-
[31]
(31) Gao, W. X.; Wang, H. L.; Li, S. M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1625. [高文秀, 王洪磊, 李慎敏. 物理化学学报, 2014, 30 (9), 1625.] doi: 10.3866/PKU.WHXB201407031
-
[32]
(32) Xiong, W.; Liu, J. Z.; Ma, M.; Xu, Z. P.; Sheridan, J.; Zheng, Q. S. Phys. Rev. E 2011, 84 (5), 056329. doi: 10.1103/PhysRevE.84.056329
-
[33]
(33) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Nano Lett. 2010, 10 (10), 4067. doi: 10.1021/nl1021046
-
[34]
(34) Mosaddeghi, H.; Alavi, S.; Kowsari, M. H.; Najafi, B. J. Chem. Phys. 2012, 137 (18), 184703. doi: 10.1063/1.4763984
-
[35]
(35) Kumar, P.; Buldyrev, S. V.; Starr, F. W.; Giovambattista, N.; Stanley, H. E. Phys. Rev. E 2005, 72 (5), 051503. doi: 10.1103/PhysRevE.72.051503
-
[36]
(36) Hirunsit, P.; Balbuena, P. B. J. Phys. Chem. C 2007, 111 (4), 1709. doi: 10.1021/jp063718v
-
[37]
(37) Warner, J. H.; Mukai, M.; Kirkland, A. I. ACS Nano 2012, 6 (6), 5680. doi: 10.1021/nn3017926
-
[38]
(38) Argyris, D.; Tummala, N. R.; Striolo, A.; Cole, D. R. J. Phys. Chem. C 2008, 112 (35), 13587. doi: 10.1021/jp803234a
-
[39]
(39) Liu, L.; Zhang, L.; Sun, Z. G.; Xi, G. Nanoscale 2012, 4 (20), 6279. doi: 10.1039/c2nr31847d
-
[40]
(40) Mark, P.; Nilsson, L. J. Phys. Chem. A 2001, 105 (43), 9954. doi: 10.1021/jp003020w
-
[41]
(41) Cheng, A.; Steele, W. A. J. Chem. Phys. 1990, 92 (6), 3858. doi: 10.1063/1.458562
-
[42]
(42) Wei, N.; Lv, C. J.; Xu, Z. P. Langmuir 2014, 30 (12), 3572. doi: 10.1021/la500513x
-
[43]
(43) Jane?ek, J.; Netz, R. R. Langmuir 2007, 23 (16), 8417. doi: 10.1021/la700561q
-
[44]
(44) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; uld, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117 (19), 5179. doi: 10.1021/ja00124a002
-
[45]
(45) tzias, A.; Tylianakis, E.; Froudakis, G.; Steriotis, T. Microporous Mesoporous Mat. 2012, 154, 38. doi: 10.1016/j.micromeso.2011.10.011
-
[46]
(46) Zhu, Y. D.; Guo, X. J.; Shao, Q.; Wei, M. J.; Wu, X. M.; Lu, L. H.; Lu, X. H. Fluid Phase Equilibr. 2010, 297 (2), 215. doi: 10.1016/j.fluid.2010.05.005
-
[47]
(47) Eun, C. S.; Berkowitz, M. L. J. Phys. Chem. B 2010, 114 (42), 13410. doi: 10.1021/jp1072654
-
[48]
(48) Lum, K.; Chandler, D.; Weeks, J. D. J. Phys. Chem. B 1999, 103 (22), 4570. doi: 10.1021/jp984327m
-
[49]
(49) Ren, X. P.; Zhou, B.; Wang, C. L. J. Chem. Phys. 2012, 137 (2), 024703. doi: 10.1063/1.4733719
-
[50]
(50) Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y. W. Nano Lett. 2013, 13 (8), 3930. doi: 10.1021/nl4020292
-
[51]
(51) Deshmukh, S. A.; Kamath, G.; Baker, G. A.; Sumant, A. V.; Sankaranarayanan, S. K. R. S. Surf. Sci. 2013, 609, 129. doi: 10.1016/j.susc.2012.11.017
-
[52]
(52) Wei, N.; Peng, X. S.; Xu, Z. P. ACS Appl. Mater. Inter. 2014, 6 (8), 5877. doi: 10.1021/am500777b
-
[53]
(53) Pertsin, A.; Grunze, M. J. Phys. Chem. B 2004, 108 (4), 1357. doi: 10.1021/jp0356968
-
[54]
(54) Hub, J. S.; Winkler, F. K.; Merrick, M.; de Groot, B. L. D. J. Am. Chem. Soc. 2010, 132 (38), 13251. doi: 10.1021/jp0356968
-
[55]
(55) Zang, J.; Konduri, S.; Nair, S.; Sholl, D. S. ACS Nano 2009, 3 (6), 1548. doi: 10.1021/nn9001837
-
[56]
(56) Luzar, A.; Chandler, D. Nature 1996, 379 (6560), 55. doi: 10.1021/jp044247k
-
[57]
(57) Striolo, A. Nano Lett. 2006, 6 (4), 633. doi: 10.1038/379055a0
-
[58]
(58) Martí, J.; Sala, J.; Guàrdia, E. J. Mol. Liq. 2010, 153 (1), 72. doi: 10.1016/j.molliq.2009.09.015
-
[59]
(59) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869
-
[1]
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[4]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[5]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[6]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[9]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[10]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[11]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[12]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[13]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[14]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[15]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[16]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[17]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[18]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[19]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[20]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[1]
Metrics
- PDF Downloads(600)
- Abstract views(542)
- HTML views(5)