Citation: ZHAO Meng-Yao, YANG Xue-Ping, YANG Xiao-Ning. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1489-1498. doi: 10.3866/PKU.WHXB201506011 shu

Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene

  • Received Date: 26 November 2014
    Available Online: 1 June 2015

    Fund Project: 国家自然科学基金(21376116)资助项目 (21376116)

  • Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work, molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of 0.6-1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores (0.6-0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore. According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures.

  • 加载中
    1. [1]

      (1) Pan, Y. S.; Birkedal, H.; Pattison, P.; Brown, D.; Chapuis, G. J. Phys. Chem. B 2004, 108 (20), 6458. doi: 10.1021/jp037219v

    2. [2]

      (2) Newsome, D. A.; Sholl, D. S. J. Phys. Chem. B 2005, 109 (15), 7239. doi: 10.1021/jp044247k

    3. [3]

      (3) Milischuk, A. A.; Ladanyi, B. M. J. Chem. Phys. 2011, 135 (17), 174709. doi: 10.1063/1.3657408

    4. [4]

      (4) Qiao, Y.; Xu, X.; Li, H. Appl. Phys. Lett. 2013, 103 (23), 233106. doi: 10.1063/1.4839255

    5. [5]

      (5) Han, S.; Choi, M. Y.; Kumar, P.; Stanley, H. E. Nat. Phys. 2010, 6 (9), 685. doi: 10.1038/nphys1708

    6. [6]

      (6) Du, F.; Qu, L. T.; Xia, Z. H.; Feng, L. F.; Dai, L. M. Langmuir 2011, 27 (13), 8437. doi: 10.1021/la200995r

    7. [7]

      (7) Strauss, I.; Chan, H.; Král, P. J. Am. Chem. Soc. 2014, 136 (4), 1170. doi: 10.1021/ja4087962

    8. [8]

      (8) Cicero, G.; Grossman, J. C.; Schwegler, E.; Gygi, F.; Galli, G. J. Am. Chem. Soc. 2008, 130 (6), 1871. doi: 10.1021/ja074418+

    9. [9]

      (9) Thomas, J. A.; McGaughey, A. J. H. Nano Lett. 2008, 8 (9), 2788. doi: 10.1021/nl8013617

    10. [10]

      (10) Mashl, R. J.; Joseph, S.; Aluru, N. R.; Jakobsson, E. Nano Lett. 2003, 3 (5), 589. doi: 10.1021/nl0340226

    11. [11]

      (11) Liu, Y. C.; Wang, Q.; Lü, L. H.; Zhang, L. Z. Acta Phys. -Chim. Sin. 2005, 21 (1), 63. [刘迎春, 王琦, 吕玲红, 章连众. 物理化学学报, 2005, 21 (1), 63.] doi: 10.3866/PKU.WHXB 20050113

    12. [12]

      (12) Iiyama, T.; Nishikawa, K.; Otowa, T.; Kaneko, K. J. Phys. Chem. 1995, 99 (25), 10075. doi: 10.1021/j100025a004

    13. [13]

      (13) Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Nature 2001, 412 (6849), 802. doi: 10.1038/35090532

    14. [14]

      (14) Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y

    15. [15]

      (15) Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. ACS Nano 2010, 4 (7), 3979. doi: 10.1021/nn1008897

    16. [16]

      (16) Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k

    17. [17]

      (17) Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12 (7), 3602. doi: 10.1021/nl3012853

    18. [18]

      (18) Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU. WHXB20100812

    19. [19]

      (19) Chen, H. Q.; Müeller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma. 200800757

    20. [20]

      (20) Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3 (2), 101. doi: 10.1038/nnano. 2007.451

    21. [21]

      (21) Han, Y.; Xu, Z.; Gao, C. Adv. Funct. Mater. 2013, 23 (29), 3693. doi: 10.1002/adfm.v23.29

    22. [22]

      (22) Mi, B. X. Science 2014, 343 (6172), 740. doi: 10.1126/science.1250247

    23. [23]

      (23) Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Gri rieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343 (6172), 752. doi: 10.1126/science.1245711

    24. [24]

      (24) Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Gri rieva, I. V.; Geim, A. K. Science 2012, 335 (6067), 442. doi: 10.1126/science.1211694

    25. [25]

      (25) Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Xu, Z. P.; Zhu, H. W. ACS Nano 2013, 7 (1), 428. doi: 10.1021/nn304471w

    26. [26]

      (26) Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R. B.; Xu, Z. P.; Zhu, H. W. ACS Nano 2014, 8 (1), 850. doi: 10.1021/nn4055682

    27. [27]

      (27) Hu, M.; Mi, B. X. Environ. Sci. Technol. 2013, 47 (8), 3715. doi: 10.1021/es400571g

    28. [28]

      (28) Xu, L.; Hu, Y. Z.; Ma, T. B.; Wang, H. Nanotechnology 2013, 24 (50), 505504. doi: 10.1088/0957-4484/24/50/505504

    29. [29]

      (29) Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K.; Thiyagarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Phys. Rev. Lett. 2004, 93 (3), 035503. doi: 10.1103/PhysRevLett. 93.035503

    30. [30]

      (30) Fernández-Serra, M. V.; Artacho, E. Phys. Rev. Lett. 2006, 96 (1), 016404. doi: 10.1103/PhysRevLett.96.016404

    31. [31]

      (31) Gao, W. X.; Wang, H. L.; Li, S. M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1625. [高文秀, 王洪磊, 李慎敏. 物理化学学报, 2014, 30 (9), 1625.] doi: 10.3866/PKU.WHXB201407031

    32. [32]

      (32) Xiong, W.; Liu, J. Z.; Ma, M.; Xu, Z. P.; Sheridan, J.; Zheng, Q. S. Phys. Rev. E 2011, 84 (5), 056329. doi: 10.1103/PhysRevE.84.056329

    33. [33]

      (33) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Nano Lett. 2010, 10 (10), 4067. doi: 10.1021/nl1021046

    34. [34]

      (34) Mosaddeghi, H.; Alavi, S.; Kowsari, M. H.; Najafi, B. J. Chem. Phys. 2012, 137 (18), 184703. doi: 10.1063/1.4763984

    35. [35]

      (35) Kumar, P.; Buldyrev, S. V.; Starr, F. W.; Giovambattista, N.; Stanley, H. E. Phys. Rev. E 2005, 72 (5), 051503. doi: 10.1103/PhysRevE.72.051503

    36. [36]

      (36) Hirunsit, P.; Balbuena, P. B. J. Phys. Chem. C 2007, 111 (4), 1709. doi: 10.1021/jp063718v

    37. [37]

      (37) Warner, J. H.; Mukai, M.; Kirkland, A. I. ACS Nano 2012, 6 (6), 5680. doi: 10.1021/nn3017926

    38. [38]

      (38) Argyris, D.; Tummala, N. R.; Striolo, A.; Cole, D. R. J. Phys. Chem. C 2008, 112 (35), 13587. doi: 10.1021/jp803234a

    39. [39]

      (39) Liu, L.; Zhang, L.; Sun, Z. G.; Xi, G. Nanoscale 2012, 4 (20), 6279. doi: 10.1039/c2nr31847d

    40. [40]

      (40) Mark, P.; Nilsson, L. J. Phys. Chem. A 2001, 105 (43), 9954. doi: 10.1021/jp003020w

    41. [41]

      (41) Cheng, A.; Steele, W. A. J. Chem. Phys. 1990, 92 (6), 3858. doi: 10.1063/1.458562

    42. [42]

      (42) Wei, N.; Lv, C. J.; Xu, Z. P. Langmuir 2014, 30 (12), 3572. doi: 10.1021/la500513x

    43. [43]

      (43) Jane?ek, J.; Netz, R. R. Langmuir 2007, 23 (16), 8417. doi: 10.1021/la700561q

    44. [44]

      (44) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; uld, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117 (19), 5179. doi: 10.1021/ja00124a002

    45. [45]

      (45) tzias, A.; Tylianakis, E.; Froudakis, G.; Steriotis, T. Microporous Mesoporous Mat. 2012, 154, 38. doi: 10.1016/j.micromeso.2011.10.011

    46. [46]

      (46) Zhu, Y. D.; Guo, X. J.; Shao, Q.; Wei, M. J.; Wu, X. M.; Lu, L. H.; Lu, X. H. Fluid Phase Equilibr. 2010, 297 (2), 215. doi: 10.1016/j.fluid.2010.05.005

    47. [47]

      (47) Eun, C. S.; Berkowitz, M. L. J. Phys. Chem. B 2010, 114 (42), 13410. doi: 10.1021/jp1072654

    48. [48]

      (48) Lum, K.; Chandler, D.; Weeks, J. D. J. Phys. Chem. B 1999, 103 (22), 4570. doi: 10.1021/jp984327m

    49. [49]

      (49) Ren, X. P.; Zhou, B.; Wang, C. L. J. Chem. Phys. 2012, 137 (2), 024703. doi: 10.1063/1.4733719

    50. [50]

      (50) Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y. W. Nano Lett. 2013, 13 (8), 3930. doi: 10.1021/nl4020292

    51. [51]

      (51) Deshmukh, S. A.; Kamath, G.; Baker, G. A.; Sumant, A. V.; Sankaranarayanan, S. K. R. S. Surf. Sci. 2013, 609, 129. doi: 10.1016/j.susc.2012.11.017

    52. [52]

      (52) Wei, N.; Peng, X. S.; Xu, Z. P. ACS Appl. Mater. Inter. 2014, 6 (8), 5877. doi: 10.1021/am500777b

    53. [53]

      (53) Pertsin, A.; Grunze, M. J. Phys. Chem. B 2004, 108 (4), 1357. doi: 10.1021/jp0356968

    54. [54]

      (54) Hub, J. S.; Winkler, F. K.; Merrick, M.; de Groot, B. L. D. J. Am. Chem. Soc. 2010, 132 (38), 13251. doi: 10.1021/jp0356968

    55. [55]

      (55) Zang, J.; Konduri, S.; Nair, S.; Sholl, D. S. ACS Nano 2009, 3 (6), 1548. doi: 10.1021/nn9001837

    56. [56]

      (56) Luzar, A.; Chandler, D. Nature 1996, 379 (6560), 55. doi: 10.1021/jp044247k

    57. [57]

      (57) Striolo, A. Nano Lett. 2006, 6 (4), 633. doi: 10.1038/379055a0

    58. [58]

      (58) Martí, J.; Sala, J.; Guàrdia, E. J. Mol. Liq. 2010, 153 (1), 72. doi: 10.1016/j.molliq.2009.09.015

    59. [59]

      (59) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(600)
  • Abstract views(542)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return