Citation: LI Yan, ZHANG Ting-Ting, LI Yue, JIA Bing, TAN Hua-Hua, YU Jiang. Influence of Calcination Temperature on Dechlorination Performance of V2O5/CNTs-TiO2 Catalysts[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1541-1548. doi: 10.3866/PKU.WHXB201505261
-
Carbon nanotubes (CNTs) pretreated with concentrated HNO3 and tetrabutyl titanate were used as raw materials to prepare CNTs-TiO2 composite supports by the sol-gel method. Vanadium was then dipped into the CNTs-TiO2 composite support to synthesize the V2O5/CNTs-TiO2 catalyst. The influence of calcination temperature on the active species of the catalyst and the catalytic oxidation performance for degradation of hexachlorobenzene (HCB) were investigated. The synthesized catalysts were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. The surface chemical properties were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that the modified carbon nanotubes have high purity and graphitization degree. The effect of calcination temperature on the active components and the activity of the catalyst were investigated. The results showed that calcination at 450 ℃ favored the dispersion of the active species of the catalyst and the formation of catalytic oxidation valences of V5+ and Ti4+ in the V2O5/CNTs-TiO2 catalyst. The presence of V5+ and Ti4+ increased the concentration of the surface oxygen of the catalyst, resulting in a higher catalytic activity because of promotion of the electron mobility and oxygen transfer: 94.78% of HCB can be conversed with a loading of 0.2 g of the catalyst in an atmosphere of N2 (80%) + O2 (20%) at 250 ℃. The conversion of HCB remained above 90% during a 24 h batch test, which showed a stable catalytic performance.
-
-
[1]
(1) Zhu, N. R.; Luan, H. W.; Yuan, S. H.; Chen, J.; Wu, X. H.; Wan, L. L. J. Hazard. Mater. 2010, 176, 1101. doi: 10.1016/j.jhazmat. 2009.11.092
-
[2]
(2) Debecker, D. P.; Delaigle, R.; Hung, P. C.; Buekens, A.; Gaigneaux, E. M.; Chang, M. B. Chemosphere 2011, 82, 1337. doi: 10.1016/j.chemosphere.2010.12.007
-
[3]
(3) Yang, Y.; Yu, G.; Deng, S. B.; Wang, S. W.; Xu, Z. Z.; Huang, J.; Wang, B. Chem. Eng. J. 2012, 192, 284. doi: 10.1016/j.cej.2012.03.069
-
[4]
(4) Domin , J. L. Rev. Environ. Health 2002, 17, 135.
-
[5]
(5) Domin , J. L.; Gemma, P.; Nadal, M.; Marta, S. Environ. Int. 2012, 50, 22. doi: 10.1016/j.envint.2012.09.005
-
[6]
(6) Zhang, B. N.; Meng, F.; Shi, C.; Yang, F. Q.; Wen, D. Y.; Aronsson, J.; Gbor, P. K.; Sloan, J. Atmos. Environ. 2009, 43, 2204. doi: 10.1016/j.atmosenv.2009.01.004
-
[7]
(7) Andersson, P. L.; Berg, A. H.; Bjerselius, R.; Norrgren, L.; Olsén, H.; Olsson, P. E.; Örn, S.; Tysklind, M. Arch. Environ. Contam. Toxicol. 2001, 40, 519.
-
[8]
(8) Zhou, P.; Li, L.; Zhang, W. Z.; Guo, Y. X. Chin. J. Catal. 2004, 25, 753. [周萍, 李莉, 张文治, 郭伊荇. 催化学报, 2004, 25, 753.]
-
[9]
(9) Weber, R. Chemosphere 2007, 67, 109. doi: 10.1016/j.chemosphere.2006.05.094
-
[10]
(10) Wu, Q.; Su, Y. F.; Sun, L.; Wang, M. H.; Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙兰, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231
-
[11]
(11) Debecker, D. P.; Delaigle, R.; Bouchmella, K.; Eloy, P.; Gaigneaux, E. M.; Mutin, P. H. Catal. Today 2010, 157, 125. doi: 10.1016/j.cattod.2010.02.010
-
[12]
(12) Wang, H. C.; Liang, H. S.; Chang, M. B. J. Hazard. Mater. 2011, 186, 1781. doi: 10.1016/j.jhazmat.2010.12.070
-
[13]
(13) Nie, A.; Yang, H. S.; Li, Q.; Fan, X. Y.; Qiu, F. M.; Zhang, X. B. Chem. Res. 2011, 50, 9944.
-
[14]
(14) Lin, J. X.; Wang, G. H.; Wang, R.; Lin, B. Y.; Ni, j.; Wei, K. M. Acta Phys. -Chim. Sin. 2011, 27, 1961. [林建新, 王国华, 王蓉, 林炳裕, 倪军, 魏可镁. 物理化学学报, 2011, 27, 1961.] doi: 10.3866/PKU.WHXB 20110812
-
[15]
(15) Li, Q.; Yang, H. S.; Qiu, F. M.; Zhang, X. B. J. Hazard. Mater. 2011, 192, 915. doi: 10.1016/j.jhazmat.2011.05.101
-
[16]
(16) Lee, S. M.; Lee, H. H.; Hong, S. C. Appl. Catal A: Gen. 2014, 470, 189. doi: 10.1016/j.apcata.2013.10.057
-
[17]
(17) An, Z. Y.; Zhuo, Y. Q.; Chen, C. H. J. Fuel Chem. Technol. 2014, 42, 371. [安忠义, 禚玉群, 陈昌和. 燃料化学学报, 2014, 42, 371.]
-
[18]
(18) Lian, Z. H.; Liu, F. D.; He, H. Ind. Eng. Chem. Res. 2014, 53, 19506.
-
[19]
(19) Zhang, H.; Liu, Y. S.; Liu, W. H.; Wang, B.Y.; Wei, L. Acta Phys. Sin. 2007, 56 (12), 7256. [张辉, 刘应书, 刘文海, 王宝义, 魏龙, 物理学报, 2007, 56 (12), 7256.]
-
[20]
(20) Yang, H. P.; Shi, Z. M.; Dai, K. J.; Duan, Y. P.; Wu, J. M. Acta Chim. Sin. 2011, 69, 536. [杨汉培, 石泽敏, 戴开静, 段云平, 吴俊明. 化学学报, 2011, 69, 536.
-
[21]
(21) Chu, D. B.; Yin, X. J.; Feng, D. X.; Lin, H. S; Tian, Z.W. Acta Phys. -Chim. Sin. 2006, 22, 1238. [褚道葆, 尹晓娟, 冯得香, 林华水, 田昭武. 物理化学学报. 2006, 22, 1238.] doi: 10.3866/PKU.WHXB20061013
-
[22]
(22) Zheng, Z. H.; Tong, H.; Tong, Z. Q.; Huang, Y.; Luo, J. J. Fuel Chem. Technol. 2010, 38, 343. [郑足红, 童华, 童志权, 黄妍, 罗晶. 燃料化学学报, 2010, 38, 343.]
-
[23]
(23) Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Yang, R. J. Hazard. Mater. 2009, 168, 276. doi: 10.1016/j.jhazmat.2009.02.033
-
[24]
(24) Kim, B.; Li, Z. J.; Kay, B. D.; Dohnálek, Z.; Kim, Y. J. Phys. Chem. C 2014, 118, 9544. doi: 10.1021/jp501179y
-
[25]
(25) Han, Z. N.; Chang, V. W.; Wang, X. P.; Lim, T. T.; Hildemann, L. Chem. Eng. J. 2013, 218, 9. doi: 10.1016/j.cej.2012.12.025
-
[26]
(26) Mendialdua, J.; Casanova, R.; Barbaux, Y. J. Electron. Spectrosc. Relat. Phenom. 1995, 71, 249. doi: 110.1016/0368-2048(94)02291-7
-
[27]
(27) Demeter, M.; Reichelt, W. Surf. Sci. 2000, 454, 41.
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[3]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[4]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[5]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[6]
Haohao Sun , Wenxuan Wang , Yuli Xiong , Zelang Jian , Wen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213
-
[7]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[8]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[9]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[12]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[13]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[14]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[1]
Metrics
- PDF Downloads(242)
- Abstract views(502)
- HTML views(9)