Citation: LI Yan, ZHANG Ting-Ting, LI Yue, JIA Bing, TAN Hua-Hua, YU Jiang. Influence of Calcination Temperature on Dechlorination Performance of V2O5/CNTs-TiO2 Catalysts[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1541-1548. doi: 10.3866/PKU.WHXB201505261 shu

Influence of Calcination Temperature on Dechlorination Performance of V2O5/CNTs-TiO2 Catalysts

  • Received Date: 16 March 2015
    Available Online: 26 May 2015

    Fund Project: 国家自然科学基金(21207003) (21207003) 首都蓝天行动培育专项(Z141100001014016) (Z141100001014016) 环境模拟与污染控制国家重点实验室开放基金课题(13K08ESPCT) 和中央高校基本科研业务费专项资金(YS1401)资助项目 (13K08ESPCT) 和中央高校基本科研业务费专项资金(YS1401)

  • Carbon nanotubes (CNTs) pretreated with concentrated HNO3 and tetrabutyl titanate were used as raw materials to prepare CNTs-TiO2 composite supports by the sol-gel method. Vanadium was then dipped into the CNTs-TiO2 composite support to synthesize the V2O5/CNTs-TiO2 catalyst. The influence of calcination temperature on the active species of the catalyst and the catalytic oxidation performance for degradation of hexachlorobenzene (HCB) were investigated. The synthesized catalysts were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. The surface chemical properties were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that the modified carbon nanotubes have high purity and graphitization degree. The effect of calcination temperature on the active components and the activity of the catalyst were investigated. The results showed that calcination at 450 ℃ favored the dispersion of the active species of the catalyst and the formation of catalytic oxidation valences of V5+ and Ti4+ in the V2O5/CNTs-TiO2 catalyst. The presence of V5+ and Ti4+ increased the concentration of the surface oxygen of the catalyst, resulting in a higher catalytic activity because of promotion of the electron mobility and oxygen transfer: 94.78% of HCB can be conversed with a loading of 0.2 g of the catalyst in an atmosphere of N2 (80%) + O2 (20%) at 250 ℃. The conversion of HCB remained above 90% during a 24 h batch test, which showed a stable catalytic performance.

  • 加载中
    1. [1]

      (1) Zhu, N. R.; Luan, H. W.; Yuan, S. H.; Chen, J.; Wu, X. H.; Wan, L. L. J. Hazard. Mater. 2010, 176, 1101. doi: 10.1016/j.jhazmat. 2009.11.092

    2. [2]

      (2) Debecker, D. P.; Delaigle, R.; Hung, P. C.; Buekens, A.; Gaigneaux, E. M.; Chang, M. B. Chemosphere 2011, 82, 1337. doi: 10.1016/j.chemosphere.2010.12.007

    3. [3]

      (3) Yang, Y.; Yu, G.; Deng, S. B.; Wang, S. W.; Xu, Z. Z.; Huang, J.; Wang, B. Chem. Eng. J. 2012, 192, 284. doi: 10.1016/j.cej.2012.03.069

    4. [4]

      (4) Domin , J. L. Rev. Environ. Health 2002, 17, 135.

    5. [5]

      (5) Domin , J. L.; Gemma, P.; Nadal, M.; Marta, S. Environ. Int. 2012, 50, 22. doi: 10.1016/j.envint.2012.09.005

    6. [6]

      (6) Zhang, B. N.; Meng, F.; Shi, C.; Yang, F. Q.; Wen, D. Y.; Aronsson, J.; Gbor, P. K.; Sloan, J. Atmos. Environ. 2009, 43, 2204. doi: 10.1016/j.atmosenv.2009.01.004

    7. [7]

      (7) Andersson, P. L.; Berg, A. H.; Bjerselius, R.; Norrgren, L.; Olsén, H.; Olsson, P. E.; Örn, S.; Tysklind, M. Arch. Environ. Contam. Toxicol. 2001, 40, 519.

    8. [8]

      (8) Zhou, P.; Li, L.; Zhang, W. Z.; Guo, Y. X. Chin. J. Catal. 2004, 25, 753. [周萍, 李莉, 张文治, 郭伊荇. 催化学报, 2004, 25, 753.]

    9. [9]

      (9) Weber, R. Chemosphere 2007, 67, 109. doi: 10.1016/j.chemosphere.2006.05.094

    10. [10]

      (10) Wu, Q.; Su, Y. F.; Sun, L.; Wang, M. H.; Wang, Y. Y.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰, 孙兰, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28, 635.] doi: 10.3866/PKU.WHXB201112231

    11. [11]

      (11) Debecker, D. P.; Delaigle, R.; Bouchmella, K.; Eloy, P.; Gaigneaux, E. M.; Mutin, P. H. Catal. Today 2010, 157, 125. doi: 10.1016/j.cattod.2010.02.010

    12. [12]

      (12) Wang, H. C.; Liang, H. S.; Chang, M. B. J. Hazard. Mater. 2011, 186, 1781. doi: 10.1016/j.jhazmat.2010.12.070

    13. [13]

      (13) Nie, A.; Yang, H. S.; Li, Q.; Fan, X. Y.; Qiu, F. M.; Zhang, X. B. Chem. Res. 2011, 50, 9944.

    14. [14]

      (14) Lin, J. X.; Wang, G. H.; Wang, R.; Lin, B. Y.; Ni, j.; Wei, K. M. Acta Phys. -Chim. Sin. 2011, 27, 1961. [林建新, 王国华, 王蓉, 林炳裕, 倪军, 魏可镁. 物理化学学报, 2011, 27, 1961.] doi: 10.3866/PKU.WHXB 20110812

    15. [15]

      (15) Li, Q.; Yang, H. S.; Qiu, F. M.; Zhang, X. B. J. Hazard. Mater. 2011, 192, 915. doi: 10.1016/j.jhazmat.2011.05.101

    16. [16]

      (16) Lee, S. M.; Lee, H. H.; Hong, S. C. Appl. Catal A: Gen. 2014, 470, 189. doi: 10.1016/j.apcata.2013.10.057

    17. [17]

      (17) An, Z. Y.; Zhuo, Y. Q.; Chen, C. H. J. Fuel Chem. Technol. 2014, 42, 371. [安忠义, 禚玉群, 陈昌和. 燃料化学学报, 2014, 42, 371.]

    18. [18]

      (18) Lian, Z. H.; Liu, F. D.; He, H. Ind. Eng. Chem. Res. 2014, 53, 19506.

    19. [19]

      (19) Zhang, H.; Liu, Y. S.; Liu, W. H.; Wang, B.Y.; Wei, L. Acta Phys. Sin. 2007, 56 (12), 7256. [张辉, 刘应书, 刘文海, 王宝义, 魏龙, 物理学报, 2007, 56 (12), 7256.]

    20. [20]

      (20) Yang, H. P.; Shi, Z. M.; Dai, K. J.; Duan, Y. P.; Wu, J. M. Acta Chim. Sin. 2011, 69, 536. [杨汉培, 石泽敏, 戴开静, 段云平, 吴俊明. 化学学报, 2011, 69, 536.

    21. [21]

      (21) Chu, D. B.; Yin, X. J.; Feng, D. X.; Lin, H. S; Tian, Z.W. Acta Phys. -Chim. Sin. 2006, 22, 1238. [褚道葆, 尹晓娟, 冯得香, 林华水, 田昭武. 物理化学学报. 2006, 22, 1238.] doi: 10.3866/PKU.WHXB20061013

    22. [22]

      (22) Zheng, Z. H.; Tong, H.; Tong, Z. Q.; Huang, Y.; Luo, J. J. Fuel Chem. Technol. 2010, 38, 343. [郑足红, 童华, 童志权, 黄妍, 罗晶. 燃料化学学报, 2010, 38, 343.]

    23. [23]

      (23) Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Yang, R. J. Hazard. Mater. 2009, 168, 276. doi: 10.1016/j.jhazmat.2009.02.033

    24. [24]

      (24) Kim, B.; Li, Z. J.; Kay, B. D.; Dohnálek, Z.; Kim, Y. J. Phys. Chem. C 2014, 118, 9544. doi: 10.1021/jp501179y

    25. [25]

      (25) Han, Z. N.; Chang, V. W.; Wang, X. P.; Lim, T. T.; Hildemann, L. Chem. Eng. J. 2013, 218, 9. doi: 10.1016/j.cej.2012.12.025

    26. [26]

      (26) Mendialdua, J.; Casanova, R.; Barbaux, Y. J. Electron. Spectrosc. Relat. Phenom. 1995, 71, 249. doi: 110.1016/0368-2048(94)02291-7

    27. [27]

      (27) Demeter, M.; Reichelt, W. Surf. Sci. 2000, 454, 41.


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(242)
  • Abstract views(502)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return