Citation: ZENG Ling-Xiao, LI Xin-Ran, JIN Hong-Wei, LIU Zhen-Ming, ZHANG Liang-Ren. Comparison of the Selectivity of Human Adenosine Receptor Anta nists Based on Structure and Pharmacophore Features[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1584-1596. doi: 10.3866/PKU.WHXB201505253
-
Adenosine receptors (ARs) are crucial therapeutic targets, and selective adenosine receptor anta nists are promising for numerous therapeutic applications. In this study, three dimensional models of human adenosine A1, A2B, and A3 receptors (A1AR, A2BAR, A3AR, respectively) were generated by homology modeling. In addition, pharmacophore models of the anta nists of four human adenosine receptor subtypes were developed using the LigandScout 3.12 program. Furthermore, Induced Fit Docking module of Schrödinger program was implemented to investigate receptor-ligand interactions. The results show that because of the subfamily-wide conservation of the core pocket residues, the ligand binding pockets of the three raw AR homology models are extremely similar, which poses challenges for subtype selective ligand recognition. However, the pharmacophore models of the four AR subtypes differ in pharmacophore features and spatial configuration, which are also consistent with previous site-directed mutagenesis studies. This indicates that binding site optimization is a crucial step in model generation, and the distributions for a set of pharmacophore features in ligand-based pharmacophore, including hydrogen bond acceptors, hydrogen bond donors, hydrophobic centroids, and aromatic rings, can reflect the position and direction characterization of hydrogen bonds and hydrophobic cavities, which aid identification and characterization of binding sites. This study may provide a significant theoretical foundation for further raw model optimization in homology modeling and discovery of novel selective human adenosine receptor anta nists.
-
Keywords:
-
Pharmacophore
, - Human adenosine receptor,
- Anta nist,
- Selectivity
-
-
-
[1]
(1) Krishnan, A.; Almen, M. S.; Fredriksson, R.; Schioth, H. B. PLoS One 2012, 7 (1), e29817.
-
[2]
(2) Lappano, R.; Maggiolini, M. Nat. Rev. Drug Discov. 2011, 10 (1), 47. doi: 10.1038/nrd3320
-
[3]
(3) Liang, F.; Yue, J.; Wang, J.; Zhang, L.; Fan, R.; Zhang, H.; Zhang, Q. Med. Oncol. 2015, 32 (3), 49. doi: 10.1007/s12032-015-0486-1
-
[4]
(4) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat. Rev. Drug Discov. 2006, 5 (12), 993. doi: 10.1038/nrd2199
-
[5]
(5) Chen, J. F.; Eltzschig, H. K.; Fredholm, B. B. Nat. Rev. Drug Discov. 2013, 12 (4), 265. doi: 10.1038/nrd3955
-
[6]
(6) Ke, Y. R.; Jin, H. W.; Liu, Z. M.; Zhang, L. R. Acta Phys. -Chim. Sin. 2010, 26 (10), 2833. [柯艳蓉, 金宏威, 刘振明, 张亮仁. 物理化学学报, 2010, 26 (10), 2833.] doi: 10.3866/PKU.WHXB20100916
-
[7]
(7) Robeva, A. S.; Woodard, R. L.; Jin, X.; Gao, Z.; Bhattacharya, S.; Taylor, H. E.; Rosin, D. L.; Linden, J. Drug Develop. Res. 1996, 39 (3-4), 243.
-
[8]
(8) Fredholm, B. B.; AP, I. J.; Jacobson, K. A.; Klotz, K. N.; Linden, J. Pharmacol. Rev. 2001, 53 (4), 527.
-
[9]
(9) Jacobson, K. A.; Gao, Z. G. Nat. Rev. Drug Discov. 2006, 5 (3), 247. doi: 10.1038/nrd1983
-
[10]
(10) Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W., Jr. Pharmacol. Rev. 2014, 66 (1), 334.
-
[11]
(11) Congreve, M.; Langmead, C. J.; Mason, J. S.; Marshall, F. H. J. Med. Chem. 2011, 54 (13), 4283. doi: 10.1021/jm200371q
-
[12]
(12) Costanzi, S. Methods Mol. Biol. 2012, 857, 259.
-
[13]
(13) Katritch, V.; Kufareva, I.; Abagyan, R. Neuropharmacology 2011, 60 (1), 108. doi: 10.1016/j.neuropharm.2010.07.009
-
[14]
(14) Güner, O. F. Pharmacophore Perception, Development, and Use in Drug Design; International University Line: San Die , 2000; Vol. 2.
-
[15]
(15) Khedkar, S. A.; Malde, A. K.; Coutinho, E. C.; Srivastava, S. Med. Chem. 2007, 3 (2), 187. doi: 10.2174/157340607780059521
-
[16]
(16) Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; Heitman, L. H.; Ijzerman, A P.; Cherezov, V.; Stevens, R. C. Science 2012, 337 (6091), 232. doi: 10.1126/science.1219218
-
[17]
(17) Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M. C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O'Donovan, C.; Phan, I.; Pilbout, S.; Schneider, M.Nucleic. Acids Res. 2003, 31 (1), 365. doi: 10.1093/nar/gkg095
-
[18]
(18) Discovery Studio 2.5, Release 2.5; Accelrys Software Inc.: San Die , 2009.
-
[19]
(19) Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cystallogr. 1993, 26, 283. doi: 10.1107/S0021889892009944
-
[20]
(20) Lin, K. J.; Zhu, D. J.; Leng, Y. G.; You, Q. D. Acta Phys. -Chim. Sin. 2012, 28 (7), 1783. [林克江, 朱冬吉, 冷勇敢, 尤启冬. 物理化学学报, 2012, 28 (7), 1783.] doi: 10.3866/PKU.WHXB201204192
-
[21]
(21) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. Nucleic. Acids Res. 2012, 40 (Database issue), D1100.
-
[22]
(22) Xia, J.; Jin, H.; Liu, Z.; Zhang, L.; Wang, X. S. J. Chem. Inf. Model. 2014, 54 (5), 1433. doi: 10.1021/ci500062f
-
[23]
(23) Xia, J.; Tilahun, E. L.; Reid, T. E.; Zhang, L.; Wang, X. S. Methods 2015, 71, 146. doi: 10.1016/j.ymeth.2014.11.015
-
[24]
(24) Qiao, K.; Zeng, L. X.; Jin, H. W.; Liu, Z. M.; Zhang, L. R. Acta Phys. -Chim. Sin. 2012, 28 (6), 1509. [乔康, 曾凌晓, 金宏威, 刘振明, 张亮仁. 物理化学学报, 2012, 28(6), 1509.] doi: 10.3866/PKU. WHXB201203272
-
[25]
(25) Wolber, G.; Langer, T. J. Chem. Inf. Model. 2005, 45 (1), 160. doi: 10.1021/ci049885e
-
[26]
(26) Schrödinger Suite 2013; Schrödinger, LLC: New York, 2013.
-
[27]
(27) Ballesteros, J. A.; Weinstein, H. Methods Neurosci. 1995, 25, 366.
-
[28]
(28) Kiesman, W. F.; Zhao, J.; Conlon, P. R.; Dowling, J. E.; Petter, R. C.; Lutterodt, F.; Jin, X.; Smits, G.; Fure, M.; Jayaraj, A.; Kim, J.; Sullivan, G.; Linden, J. J. Med. Chem. 2006, 49 (24), 7119.
-
[29]
(29) Giovannoni, M. P.; Vergelli, C.; Cilibrizzi, A.; Crocetti, L.; Biancalani, C.; Graziano, A.; Dal Piaz, V.; Loza, M. I.; Cadavid, M. I.; Diaz, J. L.; Gavalda, A. Bioorg. Med. Chem. 2010, 18 (22), 7890. doi: 10.1016/j.bmc.2010.09.043
-
[30]
(30) Chang, L. C.; Kuenzel, J. V.; Mulder-Krieger, T.; Westerhout, J.; Spangenberg, T.; Brussee, J.; Ijzerman, A. P. J. Med. Chem. 2007, 50 (4), 828. doi: 10.1021/jm0607956
-
[31]
(31) Scheiff, A. B.; Yerande, S. G.; El-Tayeb, A.; Li, W.; Inamdar, G. S.; Vasu, K. K.; Sudarsanam, V.; Muller, C. E. Bioorg. Med. Chem. 2010, 18 (6), 2195. doi: 10.1016/j.bmc. 2010.01.072
-
[32]
(32) Novellino, E.; Cosimelli, B.; Ehlardo, M.; Greco, G.; Iadanza, M.; Lavecchia, A.; Rimoli, M. G.; Sala, A.; Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Taliani, S.; La Motta, C.; Klotz, K. N.; Tuscano, D.; Trincavelli, M. L.; Martini, C. J. Med. Chem. 2005, 48 (26), 8253.
-
[33]
(33) Mishra, C. B.; Barodia, S. K.; Prakash, A.; Kumar, J. B. S.; Luthra, P. M. Bioorg. Med. Chem. 2010, 18 (7), 2491. doi: 10.1016/j.bmc.2010.02.048
-
[34]
(34) Moorjani, M.; Zhang, X.; Chen, Y.; Lin, E.; Rueter, J. K.; Gross, R. S.; Lanier, M. C.; Tellew, J. E.; Williams, J. P.; Lechner, S. M.; Malany, S.; Santos, M.; Ekhlassi, P.; Castro-Palomino, J. C.; Crespo, M. I.; Prat, M.; Gual, S.; Diaz, J. L.; Saunders, J.; Slee, D. H. Bioorg. Med. Chem. Lett. 2008, 18 (4), 1269. doi: 10.1016/j.bmcl.2008.01.036
-
[35]
(35) Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Jordan, A. M.; Knight, A. R.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Roffey, J.; Stratton, G. C.; Upton, R.; Weiss, S. M.; Williamson, D. S. Bioorg. Med. Chem. Lett. 2008, 18 (9), 2924. doi: 10.1016/j.bmcl.2008.03.072
-
[36]
(36) Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Giles, P. R.; Jordan, A. M.; Knight, A. R.; Lawrence, A.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Todd, R. S.; Upton, R.; Weiss, S. M.; Williamson, D. S. Bioorg. Med. Chem. Lett. 2008, 18 (9), 2920. doi: 10.1016/j.bmcl.2008.03.076
-
[37]
(37) Gillespie, R. J.; Bamford, S. J.; Clay, A.; Gaur, S.; Haymes, T.; Jackson, P. S.; Jordan, A. M.; Klenke, B.; Leonardi, S.; Liu, J.; Mansell, H. L.; Ng, S.; Saadi, M.; Simmonite, H.; Stratton, G. C.; Todd, R. S.; Williamson, D. S.; Yule, I. A. Bioorg. Med. Chem. 2009, 17 (18), 6590. doi: 10.1016/j.bmc.2009.07.078
-
[38]
(38) Silverman, L. S.; Caldwell, J. P.; Greenlee, W. J.; Kisel f, E.; Matasi, J. J.; Tulshian, D. B.; Arik, L.; Foster, C.; Bertorelli, R.; Monopoli, A.; Ongini, E. Bioorg. Med. Chem. Lett. 2007, 17 (6), 1659. doi: 10.1016/j.bmcl.2006.12.104
-
[39]
(39) Firooznia, F.; Cheung, A. W.; Brinkman, J.; Grimsby, J.; Gubler, M. L.; Hamid, R.; Marcopulos, N.; Ramsey, G.; Tan, J.; Wen, Y.; Sarabu, R. Bioorg. Med. Chem. Lett. 2011, 21 (7), 1933. doi: 10.1016/j.bmcl.2011.02.053
-
[40]
(40) Cheung, A. W.; Brinkman, J.; Firooznia, F.; Flohr, A.; Grimsby, J.; Gubler, M. L.; Guertin, K.; Hamid, R.; Marcopulos, N.; Norcross, R. D.; Qi, L.; Ramsey, G.; Tan, J.; Wen, Y.; Sarabu, R. Bioorg. Med. Chem. Lett. 2010, 20 (14), 4140. doi: 10.1016/j.bmcl.2010.05.056
-
[41]
(41) Kalla, R. V.; Elzein, E.; Perry, T.; Li, X.; Palle, V.; Varkhedkar, V.; Gimbel, A.; Maa, T.; Zeng, D.; Zablocki, J. J. Med. Chem. 2006, 49 (12), 3682. doi: 10.1021/jm051268+
-
[42]
(42) Kim, Y. C.; Ji, X.; Melman, N.; Linden, J.; Jacobson, K. A. J. Med. Chem. 2000, 43 (6), 1165. doi: 10.1021/jm990421v
-
[43]
(43) Stefanachi, A.; Nicolotti, O.; Leonetti, F.; Cellamare, S.; Campagna, F.; Loza, M. I.; Brea, J. M.; Mazza, F.; Gavuzzo, E.; Carotti, A. Bioorg. Med. Chem. 2008, 16 (22), 9780. doi: 10.1016/j.bmc.2008.09.067
-
[44]
(44) Da Settimo, F.; Primofiore, G.; Taliani, S.; Marini, A. M.; La Motta, C.; Simorini, F.; Salerno, S.; Sergianni, V.; Tuccinardi, T.; Martinelli, A.; Cosimelli, B.; Greco, G.; Novellino, E.; Ciampi, O.; Trincavelli, M. L.; Martini, C. J. Med. Chem. 2007, 50 (23), 5676. doi: 10.1021/jm0708376
-
[45]
(45) Prie , E. M.; Kuenzel, J. V.; Ijzerman, A. P.; Camarasa, M. J.; Perez-Perez, M. J. J. Med. Chem. 2002, 45 (16), 3337. doi: 10.1021/jm0208469
-
[46]
(46) Melman, A.; Wang, B.; Joshi, B. V.; Gao, Z. G.; Castro, S.; Heller, C. L.; Kim, S. K.; Jeong, L. S.; Jacobson, K. A. Bioorg. Med. Chem. 2008, 16 (18), 8546. doi: 10.1016/j.bmc.2008.08.007
-
[47]
(47) Baraldi, P. G.; Cacciari, B.; Moro, S.; Spalluto, G.; Pastorin, G.; Da Ros, T.; Klotz, K. N.; Varani, K.; Gessi, S.; Borea, P. A. J. Med. Chem. 2002, 45 (4), 770. doi: 10.1021/jm0109614
-
[48]
(48) Colotta, V.; Catarzi, D.; Varano, F.; Capelli, F.; Lenzi, O.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Pugliese, A. M.; Pedata, F.; Schiesaro, A.; Morizzo, E.; Moro, S. J. Med. Chem. 2007, 50 (17), 4061. doi: 10.1021/jm070123v
-
[49]
(49) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y.; Lane, J. R.; Ijzerman, A. P.; Stevens, R. C. Science 2008, 322 (5905), 1211. doi: 10.1126/science.1164772
-
[50]
(50) Olah, M. E.; Ren, H.; Ostrowski, J.; Jacobson, K. A.; Stiles, G. L. J. Biol. Chem. 1992, 267 (15), 10764.
-
[51]
(51) Rivkees, S. A.; Barbhaiya, H.; Ijzerman, A. P. J. Biol. Chem. 1999, 274 (6), 3617. doi: 10.1074/jbc.274.6.3617
-
[52]
(52) Jaakola, V. P.; Lane, J. R.; Lin, J. Y.; Katritch, V.; Ijzerman, A. P.; Stevens, R. C. J. Biol. Chem. 2010, 285 (17), 13032. doi: 10.1074/jbc.M109.096974
-
[53]
(53) Cheng, F.; Xu, Z.; Liu, G.; Tang, Y. Eur. J. Med. Chem. 2010, 45 (8), 3459. doi: 10.1016/j.ejmech.2010.04.039
-
[54]
(54) Thimm, D.; Schiedel, A. C.; Sherbiny, F. F.; Hinz, S.; Hochheiser, K.; Bertarelli, D. C.; Maass, A.; Muller, C. E. Biochemistry-US 2013, 52 (4), 726. doi: 10.1021/bi3012065
-
[55]
(55) Ivanov, A. A.; Baskin, II.; Palyulin, V. A.; Piccagli, L.; Baraldi, P. G.; Zefirov, N. S. J. Med. Chem. 2005, 48 (22), 6813. doi: 10.1021/jm049418o
-
[56]
(56) Gao, Z. G.; Kim, S. K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. J. Med. Chem. 2002, 45 (20), 4471. doi: 10.1021/jm020211+
-
[57]
(57) Muller, C. E.; Jacobson, K. A. BBA-Biomembranes 2011, 1808 (5), 1290. doi: 10.1016/j.bbamem.2010.12.017
-
[1]
-
-
[1]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[4]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[5]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[6]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[9]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[10]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[11]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[12]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[13]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[14]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[15]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[16]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[17]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[18]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[19]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[20]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[1]
Metrics
- PDF Downloads(392)
- Abstract views(417)
- HTML views(7)