Citation: SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1609-1614. doi: 10.3866/PKU.WHXB201505252 shu

In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell

  • Received Date: 12 February 2015
    Available Online: 25 May 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2013CB933104) (973) (2013CB933104)国家自然科学基金(91127001, 11079005)资助 (91127001, 11079005)

  • We established and developed an in situ X-ray absorption fine structure (XAFS) experimental testing device for characterizing hydrogen-oxygen proton exchange membrane fuel cells (PEMFC) on XAFS beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). XAFS data were collected under the operating state of the fuel cell with Pt/C and Pd/C as the cathode and anode catalysts, respectively, while the cell current-voltage (J-V) Curve and power density curves were monitored. Changes in the oxidation states of the Pt/C catalyst were observed during the reaction process at different potentials. Strong Pt-O bonds on the surfaces of the Pt were found to be induced at high potential; this may hinder the performance of Pt and reduce its oxygen reduction reaction (ORR) activity. The study also verified the reliability and feasibility of the herein established experimental apparatus and technique.

  • 加载中
    1. [1]

      (1) Fu, X. C.; Sheng, W. X.; Yao, T. Y. Physical Chemistry, Volume II; Higher Education Press: Beijing, 2006; pp 141-143. [傅献彩, 沈文霞, 姚天杨. 物理化学. 下册. 北京: 高等教育出版社, 2006: 141-143.]

    2. [2]

      (2) Ryan, O. H.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; translated by Wang, X. H.; Huang, H. Publishing House of Electronics Industry: Beijing, 2007; pp 6-7. [Ryan, O. H.; Whitney. C.; Fritz, B. P. 燃料电池基础. 王晓红, 黄宏, 译. 北京: 电子工业出版社, 2007: 6-7.]

    3. [3]

      (3) Roth, C.; Martz, N.; Buhrmester, T.; Scherer, J.; Fuess, H. J. Phys. Chem. C 2002, 4 (15), 3555.

    4. [4]

      (4) Stoupin, S.; Chung, E. H.; Chattopadhyay, S.; Segre, C. U.; Smotkin, E. S. J. Phys. Chem. B 2006, 110 (20), 9932. doi: 10.1021/jp057047x

    5. [5]

      (5) Scott, F. J.; Roth, C.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (30), 11403. doi: 10.1021/jp072698+

    6. [6]

      (6) Lin, R.; Cao, C. H.; Zhao, T. T.; Huang, Z.; Li, B. J. Power Sources 2013, 223, 190. doi: 10.1016/j.jpowsour.2012.09.073

    7. [7]

      (7) Cao, C. H.; Lin, R; Zhao, T. T.; Huang, Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 1. [曹春晖, 林瑞, 赵天天, 黄真, 马建新. 物理化学学报, 2013, 29, 1.] doi: 10.3866/PKU.WHXB 201209272

    8. [8]

      (8) Shao, M. H.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 16563. doi: 10.1021/jp053450s

    9. [9]

      (9) Smith, M. C.; Gilbert, J. A.; Mawdsley, J. R.; Seifert, S.; Myers, D. J. J. Am. Chem. Soc. 2008, 130 (26), 8112. doi: 10.1021/ja801138t

    10. [10]

      (10) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 7408. doi: 10.1021/ja061246s

    11. [11]

      (11) Teliska, M.; O'Grady, W. E.; Ramaker, D. E. J. Phys. Chem. B 2005, 109 (16), 8076. doi: 10.1021/jp0502003

    12. [12]

      (12) Maniguet, S.; Mathew, R. J.; Russell, A. E. J. Phys. Chem. B 2000, 104 (9), 1998. doi: 10.1021/jp992947x

    13. [13]

      (13) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chin. J. Catal. 2012, 33, 222. [张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报, 2012, 33, 222.]

    14. [14]

      (14) Russell, A. E.; Maniguet, S.; Mathew, R. J.; Yao, J.; Roberts, M. A.; Thompsett, D. J. Power Sources 2001, 96 (1), 226. doi: 10.1016/S0378-7753(01)00573-0

    15. [15]

      (15) Viswanathan, R.; Hou, G.; Liu, R.; Bare, S. R.; Modica, F.; Mickelson, G.; Segre, C. U.; Leyarovska, N.; Smotkin, E. S. J. Phys. Chem. B 2002, 106 (13), 3458. doi: 10.1021/jp0139787

    16. [16]

      (16) Teliska, M.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (26), 9267. doi: 10.1021/jp071106k

    17. [17]

      (17) Thomas, M. A.; Badri, S.; Jamie, S. L.; Nagappan, R.; David, E. B.; David, E. R.; Sanjeev, M. J. Phys. Chem. C 2010, 114 (2), 1028. doi: 10.1021/jp908082j

    18. [18]

      (18) Fan, Q. B.; Pu, C.; Smotkin, E. S. J. Electrochem. Soc. 1996, 143 (10), 3053. doi: 10.1149/1.1837163

    19. [19]

      (19) Viswanathan, R.; Liu, R.; Smotkin, E. S. Rev. Sci. Instrum. 2002, 73 (5), 2124. doi: 10.1063/1.1472469

    20. [20]

      (20) Ian, K.; Dunesh, K.; Adam, Y.; Nicholas, D.; Smotkin, E. S. J. Am. Chem. Soc. 2010, 132, 17611. doi: 10.1021/ja1081487

    21. [21]

      (21) Rice, C.; Tong, Y.; Oldfield, E.; Wieckowski, A.; Hahn, F.; Gloaguen, F.; Leger, J. M.; Lamy, C. J. Phys. Chem. C 2000, 104, 5803. doi: 10.1021/jp0007179

    22. [22]

      (22) Sanicharane, S.; Bo, A.; Sompalli, B.; Gurau, B.; Smotkin, E. S. J. Electrochem. Soc. 2002, 149 (5), A554.

    23. [23]

      (23) Vijayaraghavan, G.; Gao, L.; Korzeniewski, C. Langmuir 2003, 19, 2333. doi: 10.1021/la0207466

    24. [24]

      (24) Tkach, I.; Panchenko, A.; Kaz, T.; gel, V.; Friedrich, K. A.; Roduner, E. Phys. Chem. Chem. Phys. 2004, 6 (23), 5419. doi: 10.1039/b411108g

    25. [25]

      (25) Lebedeva, N. P.; Rodes, A.; Feliu, J. M.; Koper, M. T. M.; Santeen, R. A. V. J. Phys. Chem. B 2002, 106, 9863. doi: 10.1021/jp0203806

    26. [26]

      (26) Kim, C. S.; Korzeniewski, C. Anal. Chem. 1997, 69 (13), 2349. doi: 10.1021/ac961306k

    27. [27]

      (27) Shin, J.; Korzeniewski, C. J. Phys. Chem. 1995, 99 (11), 3419. doi: 10.1021/j100011a003

    28. [28]

      (28) Milan, M. J.; Gianluigi, A. B.; Georgios, D. P.; Feihong, N.; Jelena, M. J. J. Phys. Chem. C 2014, 118, 8723. doi: 10.1021/jp412292w

    29. [29]

      (29) Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; ttesfeld, S. J. Electrochem. Soc. 1993, 140 (4), 1041. doi: 10.1149/1.2056194

    30. [30]

      (30) Giorgia, G.; Agnieszka, W.; Marco, M.; Luca, O.; Emiliano, P.; Sonia, D.; Arianna, M.; Roberto, M.; Andrea, D. C. J. Phys. Chem. C 2012, 116, 12791. doi: 10.1021/jp2099569

    31. [31]

      (31) Bridgid, N. W.; Bin, F.; Shan, S. Y.; Valeri, P.; Zhu, P. Y.; Rameshwori, L.; Chen, Y. S.; Jin, L.; Jun, Y.; Yang, L. F.; Shao, M. H.; Zhong, C. J. Chem. Mater. 2012, 24, 4283. doi: 10.1021/cm301613j

    32. [32]

      (32) Shin-ichi, N.; Takashi, A.; Masakuni, Y.; Takuya, O.; Hiroyuki, O.; Takayuki, I.; Hajime, K.; Tomoya, U.; Mizuki, T.; Yasuhiro, I. J. Phys. Chem. C 2013, 117, 13094. doi: 10.1021/jp402438e


  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(277)
  • Abstract views(551)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return