Citation: SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1609-1614. doi: 10.3866/PKU.WHXB201505252
-
We established and developed an in situ X-ray absorption fine structure (XAFS) experimental testing device for characterizing hydrogen-oxygen proton exchange membrane fuel cells (PEMFC) on XAFS beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). XAFS data were collected under the operating state of the fuel cell with Pt/C and Pd/C as the cathode and anode catalysts, respectively, while the cell current-voltage (J-V) Curve and power density curves were monitored. Changes in the oxidation states of the Pt/C catalyst were observed during the reaction process at different potentials. Strong Pt-O bonds on the surfaces of the Pt were found to be induced at high potential; this may hinder the performance of Pt and reduce its oxygen reduction reaction (ORR) activity. The study also verified the reliability and feasibility of the herein established experimental apparatus and technique.
-
-
[1]
(1) Fu, X. C.; Sheng, W. X.; Yao, T. Y. Physical Chemistry, Volume II; Higher Education Press: Beijing, 2006; pp 141-143. [傅献彩, 沈文霞, 姚天杨. 物理化学. 下册. 北京: 高等教育出版社, 2006: 141-143.]
-
[2]
(2) Ryan, O. H.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; translated by Wang, X. H.; Huang, H. Publishing House of Electronics Industry: Beijing, 2007; pp 6-7. [Ryan, O. H.; Whitney. C.; Fritz, B. P. 燃料电池基础. 王晓红, 黄宏, 译. 北京: 电子工业出版社, 2007: 6-7.]
-
[3]
(3) Roth, C.; Martz, N.; Buhrmester, T.; Scherer, J.; Fuess, H. J. Phys. Chem. C 2002, 4 (15), 3555.
-
[4]
(4) Stoupin, S.; Chung, E. H.; Chattopadhyay, S.; Segre, C. U.; Smotkin, E. S. J. Phys. Chem. B 2006, 110 (20), 9932. doi: 10.1021/jp057047x
-
[5]
(5) Scott, F. J.; Roth, C.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (30), 11403. doi: 10.1021/jp072698+
-
[6]
(6) Lin, R.; Cao, C. H.; Zhao, T. T.; Huang, Z.; Li, B. J. Power Sources 2013, 223, 190. doi: 10.1016/j.jpowsour.2012.09.073
-
[7]
(7) Cao, C. H.; Lin, R; Zhao, T. T.; Huang, Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 1. [曹春晖, 林瑞, 赵天天, 黄真, 马建新. 物理化学学报, 2013, 29, 1.] doi: 10.3866/PKU.WHXB 201209272
-
[8]
(8) Shao, M. H.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 16563. doi: 10.1021/jp053450s
-
[9]
(9) Smith, M. C.; Gilbert, J. A.; Mawdsley, J. R.; Seifert, S.; Myers, D. J. J. Am. Chem. Soc. 2008, 130 (26), 8112. doi: 10.1021/ja801138t
-
[10]
(10) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 7408. doi: 10.1021/ja061246s
-
[11]
(11) Teliska, M.; O'Grady, W. E.; Ramaker, D. E. J. Phys. Chem. B 2005, 109 (16), 8076. doi: 10.1021/jp0502003
-
[12]
(12) Maniguet, S.; Mathew, R. J.; Russell, A. E. J. Phys. Chem. B 2000, 104 (9), 1998. doi: 10.1021/jp992947x
-
[13]
(13) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chin. J. Catal. 2012, 33, 222. [张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报, 2012, 33, 222.]
-
[14]
(14) Russell, A. E.; Maniguet, S.; Mathew, R. J.; Yao, J.; Roberts, M. A.; Thompsett, D. J. Power Sources 2001, 96 (1), 226. doi: 10.1016/S0378-7753(01)00573-0
-
[15]
(15) Viswanathan, R.; Hou, G.; Liu, R.; Bare, S. R.; Modica, F.; Mickelson, G.; Segre, C. U.; Leyarovska, N.; Smotkin, E. S. J. Phys. Chem. B 2002, 106 (13), 3458. doi: 10.1021/jp0139787
-
[16]
(16) Teliska, M.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (26), 9267. doi: 10.1021/jp071106k
-
[17]
(17) Thomas, M. A.; Badri, S.; Jamie, S. L.; Nagappan, R.; David, E. B.; David, E. R.; Sanjeev, M. J. Phys. Chem. C 2010, 114 (2), 1028. doi: 10.1021/jp908082j
-
[18]
(18) Fan, Q. B.; Pu, C.; Smotkin, E. S. J. Electrochem. Soc. 1996, 143 (10), 3053. doi: 10.1149/1.1837163
-
[19]
(19) Viswanathan, R.; Liu, R.; Smotkin, E. S. Rev. Sci. Instrum. 2002, 73 (5), 2124. doi: 10.1063/1.1472469
-
[20]
(20) Ian, K.; Dunesh, K.; Adam, Y.; Nicholas, D.; Smotkin, E. S. J. Am. Chem. Soc. 2010, 132, 17611. doi: 10.1021/ja1081487
-
[21]
(21) Rice, C.; Tong, Y.; Oldfield, E.; Wieckowski, A.; Hahn, F.; Gloaguen, F.; Leger, J. M.; Lamy, C. J. Phys. Chem. C 2000, 104, 5803. doi: 10.1021/jp0007179
-
[22]
(22) Sanicharane, S.; Bo, A.; Sompalli, B.; Gurau, B.; Smotkin, E. S. J. Electrochem. Soc. 2002, 149 (5), A554.
-
[23]
(23) Vijayaraghavan, G.; Gao, L.; Korzeniewski, C. Langmuir 2003, 19, 2333. doi: 10.1021/la0207466
-
[24]
(24) Tkach, I.; Panchenko, A.; Kaz, T.; gel, V.; Friedrich, K. A.; Roduner, E. Phys. Chem. Chem. Phys. 2004, 6 (23), 5419. doi: 10.1039/b411108g
-
[25]
(25) Lebedeva, N. P.; Rodes, A.; Feliu, J. M.; Koper, M. T. M.; Santeen, R. A. V. J. Phys. Chem. B 2002, 106, 9863. doi: 10.1021/jp0203806
-
[26]
(26) Kim, C. S.; Korzeniewski, C. Anal. Chem. 1997, 69 (13), 2349. doi: 10.1021/ac961306k
-
[27]
(27) Shin, J.; Korzeniewski, C. J. Phys. Chem. 1995, 99 (11), 3419. doi: 10.1021/j100011a003
-
[28]
(28) Milan, M. J.; Gianluigi, A. B.; Georgios, D. P.; Feihong, N.; Jelena, M. J. J. Phys. Chem. C 2014, 118, 8723. doi: 10.1021/jp412292w
-
[29]
(29) Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; ttesfeld, S. J. Electrochem. Soc. 1993, 140 (4), 1041. doi: 10.1149/1.2056194
-
[30]
(30) Giorgia, G.; Agnieszka, W.; Marco, M.; Luca, O.; Emiliano, P.; Sonia, D.; Arianna, M.; Roberto, M.; Andrea, D. C. J. Phys. Chem. C 2012, 116, 12791. doi: 10.1021/jp2099569
-
[31]
(31) Bridgid, N. W.; Bin, F.; Shan, S. Y.; Valeri, P.; Zhu, P. Y.; Rameshwori, L.; Chen, Y. S.; Jin, L.; Jun, Y.; Yang, L. F.; Shao, M. H.; Zhong, C. J. Chem. Mater. 2012, 24, 4283. doi: 10.1021/cm301613j
-
[32]
(32) Shin-ichi, N.; Takashi, A.; Masakuni, Y.; Takuya, O.; Hiroyuki, O.; Takayuki, I.; Hajime, K.; Tomoya, U.; Mizuki, T.; Yasuhiro, I. J. Phys. Chem. C 2013, 117, 13094. doi: 10.1021/jp402438e
-
[1]
-
-
[1]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[7]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[8]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[9]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[10]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[11]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[13]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[14]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[1]
Metrics
- PDF Downloads(277)
- Abstract views(551)
- HTML views(41)