Citation:
MA Yong, WANG Guang-Wei, SUN Shao-Tao, SONG Xiu-Neng. First-Principles Study on the Near-Edge X-ray Absorption Fine Structure Spectroscopy of the Fullerene-Derivative PCBM[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1483-1488.
doi:
10.3866/PKU.WHXB201505251
-
Fullerene-derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) plays an important role in terms of electron transport in polymer solar cells. The electronic structure of PCBM is of much importance to investigate. In this study, the near-edge X-ray absorption fine structure spectroscopy and unoccupied orbitals of PCBM were researched with density functional theory. By comparing the calculated sum spectra of nonequivalent carbon atoms, we assigned the main resonances of PCBM. The origin of the shoulder in the right side of the first π* resonance was analyzed, and the results showed that this absorption peak was mainly contributed by the transitions to higher unoccupied orbitals of the unmodified carbons in the C60 cage.
-
-
-
[1]
(1) Zhuo, Z. L.; Zhang, F. J.; Xu, X. W.; Wang, J.; Lu, L. F.; Xu, Z. Acta Phys. -Chim. Sin. 2011, 27 (4), 875. [卓祖亮, 张福俊, 许晓伟, 王健, 卢丽芳, 徐征. 物理化学学报, 2011, 27 (4), 875.] doi: 10.3866/PKU.WHXB20110414
-
[2]
(2) Li, D.; Liang, R.; Yue, H.; Wang, P.; Fu, L. M.; Zhang, J. P.; Ai, X. C. Acta Phys. -Chim. Sin. 2012, 28 (6), 1373. [李丹, 梁然, 岳鹤, 王鹏, 付立民, 张建平, 艾希成. 物理化学学报, 2012, 28 (6), 1373.] doi: 10.3866/PKU. WHXB201204061
-
[3]
(3) Stöhr, J. NEXAFS Spectroscopy; Springer Verlag: Berlin, 1996; pp 1-3.
-
[4]
(4) Zhu, M. Q.; Pan, G.; Liu, T.; Li, X. L.; Yang, Y. H.; Li, W.; Li, J.; Hu, T. D.; Wu, Z. Y.; Xie, Y. N. Acta Phys. -Chim. Sin. 2005, 21 (12), 1378. [朱孟强, 潘纲, 刘涛, 李贤良, 杨玉环, 李薇, 李晋, 胡天斗, 吴自玉, 谢亚宁. 物理化学学报, 2005, 21 (12), 1378.] doi: 10.3866/PKU.WHXB20051210
-
[5]
(5) Guo, H. L.; Wang, J. Y.; Wu, Z. H.; Jiang, S. C. Acta Polymerica Sinica 2014, No. 2, 179. [郭慧龙, 王佳怡, 吴忠华, 蒋世春. 高分子学报, 2014, No. 2, 179.]
-
[6]
(6) Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M. Appl. Phys. Lett. 2009, 94, 233303. doi: 10.1063/1.3149706
-
[7]
(7) Germack, D. S.; Chan, C. K.; Kline, R. J.; Fischer, D. A.; Gundlach, D. J.; Toney, M. F.; Richter, L. J.; DeLongchamp, D. M. Macromolecules 2010, 43 (8), 3828. doi: 10.1021/ma100027b
-
[8]
(8) Xue, B.; Vaughan, B.; Poh, C. H.; Burke, K. B.; Thomsen, L.; Stapleton, A.; Zhou, X.; Bryant, G. W.; Belcher, W.; Dastoor, P. C. J. Phys. Chem. C 2010, 114 (37), 15797. doi: 10.1021/jp104695j
-
[9]
(9) Tillack, A. F.; Noone, K. M.; MacLeod, B. A.; Nordlund, D.; Nagle, K. P.; Bradley, J. A.; Hau, S. K.; Yip, H. L.; Jen, A. K. Y.; Seidler, G. T.; Ginger, D. S. ACS Appl. Mater. Interfaces 2011, 3 (3), 726. doi: 10.1021/am101055r
-
[10]
(10) Anselmo, A. S.; Dzwilewski, A.; Svensson, K.; Moons, E. J. Polm. Sci. Part B: Polym. Phys. 2013, 51 (3), 76.
-
[11]
(11) Anselmo, A. S.; Lindgren, L.; Rysz, J.; Bernasik, A.; Budkowski, A.; Andersson, M.; Svensson, K.; van Stam, J.; Moons, E. Chem. Mater. 2011, 23 (9), 2295. doi: 10.1021/cm1021596
-
[12]
(12) Watts, B.; Swaraj, S.; Nordlund, D.; Lüning, J.; Ade, H. J. Chem. Phys. 2011, 134, 024702. doi: 10.1063/1.3506636
-
[13]
(13) DeLongchamp, D. M.; Lin, E. K.; Fischer, D. A. Proc. SPIE 2005, 5940, 59400A.
-
[14]
(14) McNeill, C. R.; Ade, H. J. Mater. Chem. C 2013, 1 (2), 187. doi: 10.1039/C2TC00001F
-
[15]
(15) Mikoushkin, V. M.; Shnitov, V. V.; Bryzgalov, V. V.; rdeev, Y. S.; Boltalina, O. V.; l'dt, I. V.; Molodtsov, S. L.; Vyalykh, D. V. Nanotubes Carbon Nanostruct. 2008, 16 (5-6), 588. doi: 10.1080/15363830802286574
-
[16]
(16) Tang, Y. H.; Sham, T. K.; Hu, Y. F.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2002, 366 (5-6), 636. doi: 10.1016/S0009-2614(02)01620-2
-
[17]
(17) Pacilé, D.; Papagno, M.; Rodríguez, A. F.; Grioni, M.; Papagno, L.; Girit, C. Ö.; Meyer, J. C.; Begtrup, G. E.; Zettl, A. Phys. Rev. Lett. 2008, 101, 066806. doi: 10.1103/PhysRevLett.101.066806
-
[18]
(18) Terminello, L. J.; Shuh, D. K.; Himpsel, F. J.; Lapiano-Smith, D. A.; Stöhr, J.; Bethune, D.; Meijer, S. G. Chem. Phys. Lett. 1991, 182 (5), 491. doi: 10.1016/0009-2614(91)90113-N
-
[19]
(19) Bazylewski, P. F.; Kim, K. H.; Forrest, J. L.; Tada, H.; Choi, D. H. Chem. Phys. Lett. 2011, 508 (1-3), 90. doi: 10.1016/j. cplett.2011.04.017
-
[20]
(20) Richter, M. H.; Friedrich, D.; Schmeiber, D. BioNanoSci 2012, 2 (1), 59. doi: 10.1007/s12668-011-0034-1
-
[21]
(21) Friedrich, D.; Henkel, K.; Richter, M.; Schmeiber, D. BioNanoSci 2011, 1 (4), 218. doi: 10.1007/s12668-011-0025-2
-
[22]
(22) Patnaik, A.; Okudaira, K. K.; Kera, S.; Setoyama, H.; Mase, K.; Ueno, N. J. Chem. Phys. 2005, 122 (15), 154703. doi: 10.1063/1.1880952
-
[23]
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
-
[24]
(24) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913
-
[25]
(25) Rassolov, V.; Pople, J. A.; Ratner, M.; Windus, T. L. J. Chem. Phys. 1998, 109 (4), 1223. doi: 10.1063/1.476673
-
[26]
(26) Hermann, K.; Pettersson, L.; Casida, M.; et al. StoBe Version 3.0; StoBe Software: Stockholm, Sweden, 2007.
-
[27]
(27) Luo, Y.; Ågren, H.; Keil, M.; Friedlein, R.; Salaneck, W. R. Chem. Phys. Lett. 2001, 337, 176. doi: 10.1016/S0009-2614(01)00181-6
-
[28]
(28) Hellgren, N.; Guo, J.; Såthe, C.; Agui, A.; Nordgren, J.; Luo, Y.; Ågren, H.; Sundgren, J. E. Appl. Phys. Lett. 2001, 79 (26), 4348. doi: 10.1063/1.1428108
-
[29]
(29) Nyberg, M.; Luo, Y.; Triguero, L.; Pettersson, L. G. M.; Ågren, H. Phys. Rev. B 1999, 60, 7956. doi: 10.1103/PhysRevB.60.7956
-
[30]
(30) Carlegrim, E.; Gao, B.; Kanciurzewska, A.; de Jong, M. P.; Wu, Z.; Luo, Y.; Fahlman, M. Phys. Rev. B 2008, 77, 054420. doi: 10.1103/PhysRevB.77.054420
-
[31]
(31) von Barth, U.; Grossman, G. Solid State Commun. 1979, 32 (8), 645. doi: 10.1016/0038-1098(79)90719-1
-
[32]
(32) von Barth, U.; Grossman, G. Phys. Rev. B 1982, 25, 5150. doi: 10.1103/PhysRevB.25.5150
-
[33]
(33) Luo, Y.; Ågren, H.; Gelmukhanov, F.; Guo, J.; Skytt, P.; Wassdahl, N.; Nordgren, J. Phys. Rev. B 1995, 52, 14479.
-
[34]
(34) Gao, B.; Liu, L.; Wang, C.; Wu, Z.; Luo, Y. J. Chem. Phys. 2007, 127 (16), 164314. doi: 10.1063/1.2800028
-
[35]
(35) Zhao, T.; Gao, B.; Liu, L.; Ye, Q.; Chu, W. S.; Wu, Z. Y. Chin. Phys. C 2009, 33 (11), 954. doi: 10.1088/1674-1137/33/11/005
-
[36]
(36) Qi, J.; Hua, W.; Gao, B. Chem. Phys. Lett. 2012, 539-540, 222.
-
[37]
(37) Song, X.; Ma Y.; Wang, C.; Dietrich, P. D.; Unger, W. E. S.; Luo, Y. J. Phys. Chem. C 2012, 116 (23), 12649. doi: 10.1021/jp302716w
-
[38]
(38) Triguero, L.; Pettersson, L. G. M.; Ågren, H. Phys. Rev. B 1998, 58, 8097. doi: 10.1103/PhysRevB.58.8097
-
[39]
(39) Triguero, L.; Plashkevych, O.; Pettersson, L. G. M.; Ågren, H. J. Electron Spectrosc. Relat. Phenom. 1999, 104 (1-3), 195. doi: 10.1016/S0368-2048(99)00008-0
-
[40]
(40) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[41]
(41) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822
-
[42]
(42) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR: Basic Principles and Progress; Springer Verlag: Berlin Heidelberg, 1990; Vol. 213.
-
[43]
(43) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100 (8), 5829. doi: 10.1063/1.467146
-
[44]
(44) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: London, 1996.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[7]
Yuqiao Zhou , Weidi Cao , Shunxi Dong , Lili Lin , Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003
-
[8]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[13]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[14]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[15]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[16]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[17]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[18]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[19]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[20]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[1]
Metrics
- PDF Downloads(272)
- Abstract views(896)
- HTML views(80)