Citation: MA Yong, WANG Guang-Wei, SUN Shao-Tao, SONG Xiu-Neng. First-Principles Study on the Near-Edge X-ray Absorption Fine Structure Spectroscopy of the Fullerene-Derivative PCBM[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1483-1488. doi: 10.3866/PKU.WHXB201505251 shu

First-Principles Study on the Near-Edge X-ray Absorption Fine Structure Spectroscopy of the Fullerene-Derivative PCBM

  • Received Date: 26 January 2015
    Available Online: 25 May 2015

    Fund Project: 国家自然科学基金(21303096, 11374195) (21303096, 11374195) 山东省优秀中青年科学家科研奖励基金(BS2013CL016) (BS2013CL016) 中国博士后科学基金(2013M541951) (2013M541951)

  • Fullerene-derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) plays an important role in terms of electron transport in polymer solar cells. The electronic structure of PCBM is of much importance to investigate. In this study, the near-edge X-ray absorption fine structure spectroscopy and unoccupied orbitals of PCBM were researched with density functional theory. By comparing the calculated sum spectra of nonequivalent carbon atoms, we assigned the main resonances of PCBM. The origin of the shoulder in the right side of the first π* resonance was analyzed, and the results showed that this absorption peak was mainly contributed by the transitions to higher unoccupied orbitals of the unmodified carbons in the C60 cage.

  • 加载中
    1. [1]

      (1) Zhuo, Z. L.; Zhang, F. J.; Xu, X. W.; Wang, J.; Lu, L. F.; Xu, Z. Acta Phys. -Chim. Sin. 2011, 27 (4), 875. [卓祖亮, 张福俊, 许晓伟, 王健, 卢丽芳, 徐征. 物理化学学报, 2011, 27 (4), 875.] doi: 10.3866/PKU.WHXB20110414

    2. [2]

      (2) Li, D.; Liang, R.; Yue, H.; Wang, P.; Fu, L. M.; Zhang, J. P.; Ai, X. C. Acta Phys. -Chim. Sin. 2012, 28 (6), 1373. [李丹, 梁然, 岳鹤, 王鹏, 付立民, 张建平, 艾希成. 物理化学学报, 2012, 28 (6), 1373.] doi: 10.3866/PKU. WHXB201204061

    3. [3]

      (3) Stöhr, J. NEXAFS Spectroscopy; Springer Verlag: Berlin, 1996; pp 1-3.

    4. [4]

      (4) Zhu, M. Q.; Pan, G.; Liu, T.; Li, X. L.; Yang, Y. H.; Li, W.; Li, J.; Hu, T. D.; Wu, Z. Y.; Xie, Y. N. Acta Phys. -Chim. Sin. 2005, 21 (12), 1378. [朱孟强, 潘纲, 刘涛, 李贤良, 杨玉环, 李薇, 李晋, 胡天斗, 吴自玉, 谢亚宁. 物理化学学报, 2005, 21 (12), 1378.] doi: 10.3866/PKU.WHXB20051210

    5. [5]

      (5) Guo, H. L.; Wang, J. Y.; Wu, Z. H.; Jiang, S. C. Acta Polymerica Sinica 2014, No. 2, 179. [郭慧龙, 王佳怡, 吴忠华, 蒋世春. 高分子学报, 2014, No. 2, 179.]

    6. [6]

      (6) Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M. Appl. Phys. Lett. 2009, 94, 233303. doi: 10.1063/1.3149706

    7. [7]

      (7) Germack, D. S.; Chan, C. K.; Kline, R. J.; Fischer, D. A.; Gundlach, D. J.; Toney, M. F.; Richter, L. J.; DeLongchamp, D. M. Macromolecules 2010, 43 (8), 3828. doi: 10.1021/ma100027b

    8. [8]

      (8) Xue, B.; Vaughan, B.; Poh, C. H.; Burke, K. B.; Thomsen, L.; Stapleton, A.; Zhou, X.; Bryant, G. W.; Belcher, W.; Dastoor, P. C. J. Phys. Chem. C 2010, 114 (37), 15797. doi: 10.1021/jp104695j

    9. [9]

      (9) Tillack, A. F.; Noone, K. M.; MacLeod, B. A.; Nordlund, D.; Nagle, K. P.; Bradley, J. A.; Hau, S. K.; Yip, H. L.; Jen, A. K. Y.; Seidler, G. T.; Ginger, D. S. ACS Appl. Mater. Interfaces 2011, 3 (3), 726. doi: 10.1021/am101055r

    10. [10]

      (10) Anselmo, A. S.; Dzwilewski, A.; Svensson, K.; Moons, E. J. Polm. Sci. Part B: Polym. Phys. 2013, 51 (3), 76.

    11. [11]

      (11) Anselmo, A. S.; Lindgren, L.; Rysz, J.; Bernasik, A.; Budkowski, A.; Andersson, M.; Svensson, K.; van Stam, J.; Moons, E. Chem. Mater. 2011, 23 (9), 2295. doi: 10.1021/cm1021596

    12. [12]

      (12) Watts, B.; Swaraj, S.; Nordlund, D.; Lüning, J.; Ade, H. J. Chem. Phys. 2011, 134, 024702. doi: 10.1063/1.3506636

    13. [13]

      (13) DeLongchamp, D. M.; Lin, E. K.; Fischer, D. A. Proc. SPIE 2005, 5940, 59400A.

    14. [14]

      (14) McNeill, C. R.; Ade, H. J. Mater. Chem. C 2013, 1 (2), 187. doi: 10.1039/C2TC00001F

    15. [15]

      (15) Mikoushkin, V. M.; Shnitov, V. V.; Bryzgalov, V. V.; rdeev, Y. S.; Boltalina, O. V.; l'dt, I. V.; Molodtsov, S. L.; Vyalykh, D. V. Nanotubes Carbon Nanostruct. 2008, 16 (5-6), 588. doi: 10.1080/15363830802286574

    16. [16]

      (16) Tang, Y. H.; Sham, T. K.; Hu, Y. F.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2002, 366 (5-6), 636. doi: 10.1016/S0009-2614(02)01620-2

    17. [17]

      (17) Pacilé, D.; Papagno, M.; Rodríguez, A. F.; Grioni, M.; Papagno, L.; Girit, C. Ö.; Meyer, J. C.; Begtrup, G. E.; Zettl, A. Phys. Rev. Lett. 2008, 101, 066806. doi: 10.1103/PhysRevLett.101.066806

    18. [18]

      (18) Terminello, L. J.; Shuh, D. K.; Himpsel, F. J.; Lapiano-Smith, D. A.; Stöhr, J.; Bethune, D.; Meijer, S. G. Chem. Phys. Lett. 1991, 182 (5), 491. doi: 10.1016/0009-2614(91)90113-N

    19. [19]

      (19) Bazylewski, P. F.; Kim, K. H.; Forrest, J. L.; Tada, H.; Choi, D. H. Chem. Phys. Lett. 2011, 508 (1-3), 90. doi: 10.1016/j. cplett.2011.04.017

    20. [20]

      (20) Richter, M. H.; Friedrich, D.; Schmeiber, D. BioNanoSci 2012, 2 (1), 59. doi: 10.1007/s12668-011-0034-1

    21. [21]

      (21) Friedrich, D.; Henkel, K.; Richter, M.; Schmeiber, D. BioNanoSci 2011, 1 (4), 218. doi: 10.1007/s12668-011-0025-2

    22. [22]

      (22) Patnaik, A.; Okudaira, K. K.; Kera, S.; Setoyama, H.; Mase, K.; Ueno, N. J. Chem. Phys. 2005, 122 (15), 154703. doi: 10.1063/1.1880952

    23. [23]

      (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.

    24. [24]

      (24) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913

    25. [25]

      (25) Rassolov, V.; Pople, J. A.; Ratner, M.; Windus, T. L. J. Chem. Phys. 1998, 109 (4), 1223. doi: 10.1063/1.476673

    26. [26]

      (26) Hermann, K.; Pettersson, L.; Casida, M.; et al. StoBe Version 3.0; StoBe Software: Stockholm, Sweden, 2007.

    27. [27]

      (27) Luo, Y.; Ågren, H.; Keil, M.; Friedlein, R.; Salaneck, W. R. Chem. Phys. Lett. 2001, 337, 176. doi: 10.1016/S0009-2614(01)00181-6

    28. [28]

      (28) Hellgren, N.; Guo, J.; Såthe, C.; Agui, A.; Nordgren, J.; Luo, Y.; Ågren, H.; Sundgren, J. E. Appl. Phys. Lett. 2001, 79 (26), 4348. doi: 10.1063/1.1428108

    29. [29]

      (29) Nyberg, M.; Luo, Y.; Triguero, L.; Pettersson, L. G. M.; Ågren, H. Phys. Rev. B 1999, 60, 7956. doi: 10.1103/PhysRevB.60.7956

    30. [30]

      (30) Carlegrim, E.; Gao, B.; Kanciurzewska, A.; de Jong, M. P.; Wu, Z.; Luo, Y.; Fahlman, M. Phys. Rev. B 2008, 77, 054420. doi: 10.1103/PhysRevB.77.054420

    31. [31]

      (31) von Barth, U.; Grossman, G. Solid State Commun. 1979, 32 (8), 645. doi: 10.1016/0038-1098(79)90719-1

    32. [32]

      (32) von Barth, U.; Grossman, G. Phys. Rev. B 1982, 25, 5150. doi: 10.1103/PhysRevB.25.5150

    33. [33]

      (33) Luo, Y.; Ågren, H.; Gelmukhanov, F.; Guo, J.; Skytt, P.; Wassdahl, N.; Nordgren, J. Phys. Rev. B 1995, 52, 14479.

    34. [34]

      (34) Gao, B.; Liu, L.; Wang, C.; Wu, Z.; Luo, Y. J. Chem. Phys. 2007, 127 (16), 164314. doi: 10.1063/1.2800028

    35. [35]

      (35) Zhao, T.; Gao, B.; Liu, L.; Ye, Q.; Chu, W. S.; Wu, Z. Y. Chin. Phys. C 2009, 33 (11), 954. doi: 10.1088/1674-1137/33/11/005

    36. [36]

      (36) Qi, J.; Hua, W.; Gao, B. Chem. Phys. Lett. 2012, 539-540, 222.

    37. [37]

      (37) Song, X.; Ma Y.; Wang, C.; Dietrich, P. D.; Unger, W. E. S.; Luo, Y. J. Phys. Chem. C 2012, 116 (23), 12649. doi: 10.1021/jp302716w

    38. [38]

      (38) Triguero, L.; Pettersson, L. G. M.; Ågren, H. Phys. Rev. B 1998, 58, 8097. doi: 10.1103/PhysRevB.58.8097

    39. [39]

      (39) Triguero, L.; Plashkevych, O.; Pettersson, L. G. M.; Ågren, H. J. Electron Spectrosc. Relat. Phenom. 1999, 104 (1-3), 195. doi: 10.1016/S0368-2048(99)00008-0

    40. [40]

      (40) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    41. [41]

      (41) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822

    42. [42]

      (42) Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR: Basic Principles and Progress; Springer Verlag: Berlin Heidelberg, 1990; Vol. 213.

    43. [43]

      (43) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100 (8), 5829. doi: 10.1063/1.467146

    44. [44]

      (44) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: London, 1996.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    7. [7]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    13. [13]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

Metrics
  • PDF Downloads(272)
  • Abstract views(896)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return