Citation: HOU Li-Mei, WEN Zhi, LI Yin-Xiang, HU Hua-You, KAN Yu-He, SU Zhong-Min. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1504-1512. doi: 10.3866/PKU.WHXB201505211 shu

Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells

  • Received Date: 9 March 2015
    Available Online: 21 May 2015

    Fund Project: 国家自然科学基金(21131001, 21273030, 21203019, 21203020)资助项目 (21131001, 21273030, 21203019, 21203020)

  • Nine new D-π-A metal-free sensitizers INI1-INI9 with indolizino [3,4,5-ab] isoindole (INI) as electronic donor were investigated using the density functional theory (DFT) and time-dependent DFT calculations. Compared to D5 and D9, some major factors affecting the performance of the cell, including light harvesting, electron injection, dye regeneration, and charge recombination are taken into consideration. Calculations show that these novel INI-based sensitizers have an absorption maximum at 440-500 nm when π conjugated bridge attached at different position of aromatic ring and an excellent charge separation characters. INI2 shows better performance than that of D9 due to the theoretical maximum short-circuit current density of 13.26 mA·cm-2. Fortunately, condensed Fukui function calculation suggested that the INI2 be easiest to obtain due to a largest nucleophilic index at 2 position of INI aromatic ring. Based on the calculations of dyes adsorption on TiO2 cluster, indirect electron injection may be the main path from dye to TiO2 for INI2 and D5. Our calculations indicate that the INI dyes will be promising candidates for fabrication of the high performance dye-sensitized solar cells.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353 (6346), 737. doi: 10.1038/353737a0

    2. [2]

      (2) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334 (6056), 629. doi: 10.1126/science.1209688

    3. [3]

      (3) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Edit. 2009, 48 (14), 2474. doi: 10.1002/anie.v48:14

    4. [4]

      (4) He, J. J.; Chen, S. X.; Wang, T. T.; Zeng, H. P. Chin. J. Org. Chem. 2012, 32 (3), 472. [何俊杰, 陈舒欣, 王婷婷, 曾和平. 有机化学, 2012, 32 (3), 472.]

    5. [5]

      (5) Qu, S. Y.; Hua, J. L.; Tian, H. Sci. Sin. Chim. 2012, 42, 567. [瞿三寅, 花建丽, 田禾. 中国科学: 化学, 2012, 42, 567.]

    6. [6]

      (6) Pei, J.; Liang, M.; Chen, J.; Tao, Z. L.; Xu, W. Acta Phys. -Chim. Sin. 2008, 24, 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24, 1950.] doi: 10.1016/S1872-1508(08)60077-7

    7. [7]

      (7) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19 (8), 1138. doi: 10.1002/adma. 200601020

    8. [8]

      (8) Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsuka shi, S.; Abe, Y.; Sugihara, H.; Arakawa, H. Chem. Commun. 2000, 13, 1173. doi: 10.1039/b001517m

    9. [9]

      (9) Wu, W. J.; Yang, J. B.; Hua, J. L.; Tang, J.; Zhang, L.; Long, Y. T.; Tian, H. J. Mater. Chem. 2010, 20 (9), 1772. doi: 10.1039/b918282a

    10. [10]

      (10) Martinez-Diaz, M. V.; de la Torre, G.; Torres, T. Chem. Commun. 2010, 46 (38), 7090. doi: 10.1039/c0cc02213f

    11. [11]

      (11) Amacher, A.; Yi, C.; Yang, J.; Bircher, M. P.; Fu, Y.; Cascella, M.; Gratzel, M.; Decurtins, S.; Liu, S. X. Chem. Commun. 2014, 50 (49), 6540. doi: 10.1039/C4CC02696A

    12. [12]

      (12) Geng, Y.; Pop, F.; Yi, C.; Avarvari, N.; Gratzel, M.; Decurtins, S.; Liu, S. X. New J. Chem. 2014, 38 (7), 3269. doi: 10.1039/c4nj00428k

    13. [13]

      (13) Chen, X. M.; Jia, C. Y.; Wan, Z. Q.; Yao, X. J. Acta Phys. -Chim. Sin. 2014, 30, 273. [陈喜明, 贾春阳, 万中全, 姚小军. 物理化学学报, 2014, 30, 273.] doi: 10.3866/PKU.WHXB 201311262

    14. [14]

      (14) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H. Adv. Mater. 2006, 18 (9), 1202. doi: 10.1002/adma.200502540

    15. [15]

      (15) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. Energy Environ. Sci. 2012, 5 (8), 8261. doi: 10.1039/c2ee22108j

    16. [16]

      (16) Mitsumori, T.; Bendikov, M.; Dautel, O.; Wudl, F.; Shioya, T.; Sato, H.; Sato, Y. J. Am. Chem. Soc. 2004, 126 (51), 16793. doi: 10.1021/ja049214x

    17. [17]

      (17) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. doi: 10.1039/b603002e

    18. [18]

      (18) Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008, 130. doi: 10.1021/ja800066y

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913

    20. [20]

      (20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865

    21. [21]

      (21) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104 (21), 4811. doi: 10.1021/jp000497z

    22. [22]

      (22) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110 (15), 5121.

    23. [23]

      (23) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393 (1-3), 51. doi: 10.1016/j.cplett.2004.06.011

    24. [24]

      (24) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys. 2004, 120 (18), 8425. doi: 10.1063/1.1688752

    25. [25]

      (25) Chai, J. D.; Head- rdon, M. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615. doi: 10.1039/b810189b

    26. [26]

      (26) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995. doi: 10.1021/jp9716997

    27. [27]

      (27) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580. doi: 10.1002/jcc.v33.5

    28. [28]

      (28) Sanchez-de-Armas, R.; San Miguel, M. A.; Oviedo, J.; Sanz, J. F. Phys. Chem. Chem. Phys. 2012, 14 (1), 225. doi: 10.1039/C1CP22058F

    29. [29]

      (29) Zhang, J.; Li, H.B.; Sun, S. L.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mater. Chem. 2012, 22 (2), 568. doi: 10.1039/C1JM13028E

    30. [30]

      (30) Zhang, J.; Kan, Y. H.; Li, H. B.; Geng, Y.; Wu, Y.; Su, Z. M. Dyes Pigments 2012, 95 (2), 313. doi: 10.1016/j.dyepig. 2012.05.020

    31. [31]

      (31) Pastore, M.; Angelis, F. D. ACS Nano 2009, 4 (1), 556. doi: 10.1021/nn901518

    32. [32]

      (32) Soler, J. M.; Artacho, E.; Gale; J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: -Condes. Matter 2002, 14 (11), 2745. doi: 10.1088/0953-8984/14/11/302

    33. [33]

      (33) Ordejón, P.; Artacho, E.; Soler, J. M. Phys. Rev. B 1996, 53 (16), R10441.

    34. [34]

      (34) Gratzel, M. Nature 2001, 414 (6861), 338.

    35. [35]

      (35) Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I. J. Phys. Chem. B 2000, 104 (9), 2053. doi: 10.1021/jp993187t

    36. [36]

      (36) Kim, B. G.; Zhen, C. G.; Jeong, E. J.; Kieffer, J.; Kim, J. Adv. Funct. Mater. 2012, 22 (8), 1606. doi: 10.1002/adfm.v22.8

    37. [37]

      (37) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory. Comput. 2008, 4 (1), 123.

    38. [38]

      (38) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126 (12), 4007. doi: 10.1021/ja039556n

    39. [39]

      (39) Fabian, J. Theor. Chem. Acc. 2001, 106 (3), 199. doi: 10.1007/s002140100250

    40. [40]

      (40) Laurent, A. D.; Jacquemin, D. Int. J. Quantum Chem. 2013, 113 (17), 2019. doi: 10.1002/qua.24438

    41. [41]

      (41) Pastore, M.; Mosconi, E.; De Angelis, F.; Grätzel, M. J. Phys. Chem. C 2010, 114 (15), 7205. doi: 10.1021/jp100713r

    42. [42]

      (42) Laurent, A. D.; Adamo, C.; Jacquemin, D. Phys. Chem. Chem. Phys. 2014, 16 (28), 14334. doi: 10.1039/c3cp55336a

    43. [43]

      (43) Zhan, W. S.; Pan, S.; Li Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2010, 26 (5), 1408. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2010, 26 (5), 1408.] doi: 10.1039/c3cp55336a

    44. [44]

      (44) Zhan, W. S.; Li, R.; Pan, S.; Guo, Y. N.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29, 255. [詹卫伸, 李睿, 潘石, 郭英楠, 张毅. 物理化学学报, 2013, 29, 255.] doi: 10.3866/PKU.WHXB201211221

    45. [45]

      (45) Le Bahers, T.; Adamo, C.; Ciofini, I. J. Chem. Theory. Comput. 2011, 7 (8), 2498. doi: 10.1021/ct200308m

    46. [46]

      (46) Grätzel, M. Accounts Chem. Res. 2009, 42 (11), 1788. doi: 10.1021/ar900141y

    47. [47]

      (47) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988, 110 (4), 1216. doi: 10.1021/ja00212a033

    48. [48]

      (48) Jiao, Y.; Ma, W.; Meng, S. Chem. Phys. Lett. 2013, 586 , 97.

    49. [49]

      (49) Zhang, J. Z.; Zhang, J.; Li, H. B.; Wu, Y.; Xu, H. L.; Zhang, M.; Geng, Y.; Su, Z. M. J. Power Sources 2014, 267, 300.

    50. [50]

      (50) Ma, W.; Jiao, Y.; Meng, S. J. Phys. Chem. C 2014, 118 (30), 16447. doi: 10.1021/jp410982e

    51. [51]

      (51) Daeneke, T.; Mozer, A. J.; Uemura, Y.; Makuta, S.; Fekete, M.; Tachibana, Y.; Koumura, N.; Bach, U.; Spiccia, L. J. Am. Chem. Soc. 2012, 134 (41), 16925. doi: 10.1021/ja3054578

    52. [52]

      (52) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332

    53. [53]

      (53) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106 (14), 4049. doi: 10.1021/ja00326a036

    54. [54]

      (54) Makedonas, C.; Mitsopoulou, C. A. European Journal of Inorganic Chemistry 2006, 2006 (3), 590.

    55. [55]

      (55) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.; Nelson, J.; Li, X.; Long, N. J.; Durrant, J. R. J. Am. Chem. Soc. 2004, 126 (16), 5225. doi: 10.1021/ja039924n


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(386)
  • Abstract views(669)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return