Citation: HOU Li-Mei, WEN Zhi, LI Yin-Xiang, HU Hua-You, KAN Yu-He, SU Zhong-Min. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1504-1512. doi: 10.3866/PKU.WHXB201505211
-
Nine new D-π-A metal-free sensitizers INI1-INI9 with indolizino [3,4,5-ab] isoindole (INI) as electronic donor were investigated using the density functional theory (DFT) and time-dependent DFT calculations. Compared to D5 and D9, some major factors affecting the performance of the cell, including light harvesting, electron injection, dye regeneration, and charge recombination are taken into consideration. Calculations show that these novel INI-based sensitizers have an absorption maximum at 440-500 nm when π conjugated bridge attached at different position of aromatic ring and an excellent charge separation characters. INI2 shows better performance than that of D9 due to the theoretical maximum short-circuit current density of 13.26 mA·cm-2. Fortunately, condensed Fukui function calculation suggested that the INI2 be easiest to obtain due to a largest nucleophilic index at 2 position of INI aromatic ring. Based on the calculations of dyes adsorption on TiO2 cluster, indirect electron injection may be the main path from dye to TiO2 for INI2 and D5. Our calculations indicate that the INI dyes will be promising candidates for fabrication of the high performance dye-sensitized solar cells.
-
-
[1]
(1) O'Regan, B.; Grätzel, M. Nature 1991, 353 (6346), 737. doi: 10.1038/353737a0
-
[2]
(2) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334 (6056), 629. doi: 10.1126/science.1209688
-
[3]
(3) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Edit. 2009, 48 (14), 2474. doi: 10.1002/anie.v48:14
-
[4]
(4) He, J. J.; Chen, S. X.; Wang, T. T.; Zeng, H. P. Chin. J. Org. Chem. 2012, 32 (3), 472. [何俊杰, 陈舒欣, 王婷婷, 曾和平. 有机化学, 2012, 32 (3), 472.]
-
[5]
(5) Qu, S. Y.; Hua, J. L.; Tian, H. Sci. Sin. Chim. 2012, 42, 567. [瞿三寅, 花建丽, 田禾. 中国科学: 化学, 2012, 42, 567.]
-
[6]
(6) Pei, J.; Liang, M.; Chen, J.; Tao, Z. L.; Xu, W. Acta Phys. -Chim. Sin. 2008, 24, 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24, 1950.] doi: 10.1016/S1872-1508(08)60077-7
-
[7]
(7) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19 (8), 1138. doi: 10.1002/adma. 200601020
-
[8]
(8) Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsuka shi, S.; Abe, Y.; Sugihara, H.; Arakawa, H. Chem. Commun. 2000, 13, 1173. doi: 10.1039/b001517m
-
[9]
(9) Wu, W. J.; Yang, J. B.; Hua, J. L.; Tang, J.; Zhang, L.; Long, Y. T.; Tian, H. J. Mater. Chem. 2010, 20 (9), 1772. doi: 10.1039/b918282a
-
[10]
(10) Martinez-Diaz, M. V.; de la Torre, G.; Torres, T. Chem. Commun. 2010, 46 (38), 7090. doi: 10.1039/c0cc02213f
-
[11]
(11) Amacher, A.; Yi, C.; Yang, J.; Bircher, M. P.; Fu, Y.; Cascella, M.; Gratzel, M.; Decurtins, S.; Liu, S. X. Chem. Commun. 2014, 50 (49), 6540. doi: 10.1039/C4CC02696A
-
[12]
(12) Geng, Y.; Pop, F.; Yi, C.; Avarvari, N.; Gratzel, M.; Decurtins, S.; Liu, S. X. New J. Chem. 2014, 38 (7), 3269. doi: 10.1039/c4nj00428k
-
[13]
(13) Chen, X. M.; Jia, C. Y.; Wan, Z. Q.; Yao, X. J. Acta Phys. -Chim. Sin. 2014, 30, 273. [陈喜明, 贾春阳, 万中全, 姚小军. 物理化学学报, 2014, 30, 273.] doi: 10.3866/PKU.WHXB 201311262
-
[14]
(14) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H. Adv. Mater. 2006, 18 (9), 1202. doi: 10.1002/adma.200502540
-
[15]
(15) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. Energy Environ. Sci. 2012, 5 (8), 8261. doi: 10.1039/c2ee22108j
-
[16]
(16) Mitsumori, T.; Bendikov, M.; Dautel, O.; Wudl, F.; Shioya, T.; Sato, H.; Sato, Y. J. Am. Chem. Soc. 2004, 126 (51), 16793. doi: 10.1021/ja049214x
-
[17]
(17) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. doi: 10.1039/b603002e
-
[18]
(18) Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008, 130. doi: 10.1021/ja800066y
-
[19]
(19) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913
-
[20]
(20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
-
[21]
(21) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104 (21), 4811. doi: 10.1021/jp000497z
-
[22]
(22) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110 (15), 5121.
-
[23]
(23) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393 (1-3), 51. doi: 10.1016/j.cplett.2004.06.011
-
[24]
(24) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys. 2004, 120 (18), 8425. doi: 10.1063/1.1688752
-
[25]
(25) Chai, J. D.; Head- rdon, M. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615. doi: 10.1039/b810189b
-
[26]
(26) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995. doi: 10.1021/jp9716997
-
[27]
(27) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580. doi: 10.1002/jcc.v33.5
-
[28]
(28) Sanchez-de-Armas, R.; San Miguel, M. A.; Oviedo, J.; Sanz, J. F. Phys. Chem. Chem. Phys. 2012, 14 (1), 225. doi: 10.1039/C1CP22058F
-
[29]
(29) Zhang, J.; Li, H.B.; Sun, S. L.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mater. Chem. 2012, 22 (2), 568. doi: 10.1039/C1JM13028E
-
[30]
(30) Zhang, J.; Kan, Y. H.; Li, H. B.; Geng, Y.; Wu, Y.; Su, Z. M. Dyes Pigments 2012, 95 (2), 313. doi: 10.1016/j.dyepig. 2012.05.020
-
[31]
(31) Pastore, M.; Angelis, F. D. ACS Nano 2009, 4 (1), 556. doi: 10.1021/nn901518
-
[32]
(32) Soler, J. M.; Artacho, E.; Gale; J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: -Condes. Matter 2002, 14 (11), 2745. doi: 10.1088/0953-8984/14/11/302
-
[33]
(33) Ordejón, P.; Artacho, E.; Soler, J. M. Phys. Rev. B 1996, 53 (16), R10441.
-
[34]
(34) Gratzel, M. Nature 2001, 414 (6861), 338.
-
[35]
(35) Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I. J. Phys. Chem. B 2000, 104 (9), 2053. doi: 10.1021/jp993187t
-
[36]
(36) Kim, B. G.; Zhen, C. G.; Jeong, E. J.; Kieffer, J.; Kim, J. Adv. Funct. Mater. 2012, 22 (8), 1606. doi: 10.1002/adfm.v22.8
-
[37]
(37) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory. Comput. 2008, 4 (1), 123.
-
[38]
(38) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126 (12), 4007. doi: 10.1021/ja039556n
-
[39]
(39) Fabian, J. Theor. Chem. Acc. 2001, 106 (3), 199. doi: 10.1007/s002140100250
-
[40]
(40) Laurent, A. D.; Jacquemin, D. Int. J. Quantum Chem. 2013, 113 (17), 2019. doi: 10.1002/qua.24438
-
[41]
(41) Pastore, M.; Mosconi, E.; De Angelis, F.; Grätzel, M. J. Phys. Chem. C 2010, 114 (15), 7205. doi: 10.1021/jp100713r
-
[42]
(42) Laurent, A. D.; Adamo, C.; Jacquemin, D. Phys. Chem. Chem. Phys. 2014, 16 (28), 14334. doi: 10.1039/c3cp55336a
-
[43]
(43) Zhan, W. S.; Pan, S.; Li Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2010, 26 (5), 1408. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2010, 26 (5), 1408.] doi: 10.1039/c3cp55336a
-
[44]
(44) Zhan, W. S.; Li, R.; Pan, S.; Guo, Y. N.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29, 255. [詹卫伸, 李睿, 潘石, 郭英楠, 张毅. 物理化学学报, 2013, 29, 255.] doi: 10.3866/PKU.WHXB201211221
-
[45]
(45) Le Bahers, T.; Adamo, C.; Ciofini, I. J. Chem. Theory. Comput. 2011, 7 (8), 2498. doi: 10.1021/ct200308m
-
[46]
(46) Grätzel, M. Accounts Chem. Res. 2009, 42 (11), 1788. doi: 10.1021/ar900141y
-
[47]
(47) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988, 110 (4), 1216. doi: 10.1021/ja00212a033
-
[48]
(48) Jiao, Y.; Ma, W.; Meng, S. Chem. Phys. Lett. 2013, 586 , 97.
-
[49]
(49) Zhang, J. Z.; Zhang, J.; Li, H. B.; Wu, Y.; Xu, H. L.; Zhang, M.; Geng, Y.; Su, Z. M. J. Power Sources 2014, 267, 300.
-
[50]
(50) Ma, W.; Jiao, Y.; Meng, S. J. Phys. Chem. C 2014, 118 (30), 16447. doi: 10.1021/jp410982e
-
[51]
(51) Daeneke, T.; Mozer, A. J.; Uemura, Y.; Makuta, S.; Fekete, M.; Tachibana, Y.; Koumura, N.; Bach, U.; Spiccia, L. J. Am. Chem. Soc. 2012, 134 (41), 16925. doi: 10.1021/ja3054578
-
[52]
(52) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
-
[53]
(53) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106 (14), 4049. doi: 10.1021/ja00326a036
-
[54]
(54) Makedonas, C.; Mitsopoulou, C. A. European Journal of Inorganic Chemistry 2006, 2006 (3), 590.
-
[55]
(55) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.; Nelson, J.; Li, X.; Long, N. J.; Durrant, J. R. J. Am. Chem. Soc. 2004, 126 (16), 5225. doi: 10.1021/ja039924n
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[4]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[5]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[6]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[7]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[10]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[11]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[12]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[13]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[14]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[15]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[16]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[17]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[18]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[19]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[20]
Qiang Xu , Rong Zhang , Liyan Zhang , Jinxuan Liu , Shuo Wu , Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018
-
[1]
Metrics
- PDF Downloads(386)
- Abstract views(619)
- HTML views(15)