Citation: XU Zhen, QI Dong-Mei, JIANG Li, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition——II. Research Techniques and Application of Underpotential Deposition[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1231-1250. doi: 10.3866/PKU.WHXB201505151 shu

Progress of Research on Underpotential Deposition——II. Research Techniques and Application of Underpotential Deposition

  • Received Date: 23 March 2015
    Available Online: 15 May 2015

    Fund Project: 国家自然科学基金(21273199, 21073162) (21273199, 21073162)教育部博士点基金(20130101110047)资助项目 (20130101110047)

  • A variety of primary in situ research techniques applied to underpotential deposition (upd) research, including electrochemical (cyclic voltammetry (CV), chronoamperometry (CHR), and electrochemical impedance spectroscopy (EIS)), interfacial (electrochemical quartz crystal microbalance (EQCM) and electrochemical scanning tunneling microscopy/electrochemical atomic force microscopy (ECSTM/ECAFM)) and X-ray based (X-ray absorption spectroscopy (XAS) and surface X-ray scattering (SXS)) analysis techniques, are summarized in this paper. We summarize and discuss the upd characteristics of many electrochemical systems as determined by these research techniques, and analyze the corresponding relationships and principles between the upd microscopic characteristics and macroscopic test results. Some conclusions of vital importance to upd drawn based on these techniques are explicitly discussed. Also, the merits and demerits of the above-mentioned research techniques are presented and compared. In the matter of application research areas of upd, four main aspects are summarized and analyzed: function materials' electrosynthesis, electroanalysis, electrochemical atomic layer epitaxy (ECALE), and electrochemically active surface area (ECSA) characterization of noble metal (or nano) materials. Meanwhile, the principles involved in the aforementioned applications research related to upd process are briefly explained. Finally, with respect to both research techniques and application research, this paper reveals the current status of upd research and gives a bird's eye view of development trends.

  • 加载中
    1. [1]

      (1) Manne, S.; Hansma, P. K.; Massie, J.; Elings, V. B.; Gewirth, A. A. Science 1991, 251 (4990), 183. doi: 10.1126/science.251.4990.183

    2. [2]

      (2) Zhang, J. Q.; Zhang, Z.; Wang, J. M.; Cheng, S. Y.; Zeng, R. N. J. Chin. Soc. Corros. Prot. 2002, 22 (4), 241. [张鉴清, 张昭, 王建明, 成少云, 曾妊南. 中国腐蚀与防护学报, 2002, 22 (4), 241.]

    3. [3]

      (3) Popov, B. N.; Zheng, G.; White, R. E. Corrosion Sci. 1994, 36 (12), 2139. doi: 10.1016/0010-938X(94)90012-4

    4. [4]

      (4) Zheng, G.; Popov, B. N.; White, R. E. J. Electrochem. Soc. 1994, 141 (5), 1220. doi: 10.1149/1.2054899

    5. [5]

      (5) Kazemi, R.; Kiani, A. Int. J. Hydrog. Energy 2012, 37 (5), 4098. doi: 10.1016/j.ijhydene.2011.11.147

    6. [6]

      (6) Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Energy Environ. Sci. 2012, 5 (1), 5297. doi: 10.1039/c1ee02067f

    7. [7]

      (7) Liu, J. P.; Zhou, H. H.; Huang, J. T.; Huang, Z. Y.; Zeng, F. Y.; Kuang, Y. F. Int. J. Hydrog. Energy 2012, 37 (22), 16764. doi: 10.1016/j.ijhydene.2012.08.130

    8. [8]

      (8) Alanyal?o?lu, M.; Bayrakçeken, F.; Demir, Ü. Electrochim. Acta 2009, 54 (26), 6554. doi: 10.1016/j.electacta.2009.06.056

    9. [9]

      (9) Ni?anc?, F. B.; Öznülüer, T.; Demir, Ü. Electrochim. Acta 2013, 108, 281. doi: 10.1016/j.eleetacta.2013.06.135

    10. [10]

      (10) Köse, H.; Biçer, M.; Tütüno?lu, Ç.; Ayd?n, A. O.; ?i?man, ?. Electrochim. Acta 2009, 54 (6), 1680. doi: 10.1016/j.electacta.2008.09.059

    11. [11]

      (11) ?i?man, ?.; Demir, Ü. J. Electroanal. Chem. 2011, 651 (2), 222. doi: 10.1016/j.jelechem.2010.12.005

    12. [12]

      (12) Herzog, G.; Arrigan, D.W. M. Electroanalysis 2003, 15 (15-16), 1302. doi: 10.1002/elan.200302812

    13. [13]

      (13) Herzog, G.; Arrigan, D.W. M. TrAC, Trends Anal. Chem. 2005, 24 (3), 208. doi: 10.1016/j.trac.2004.11.014

    14. [14]

      (14) Orozco, J.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Environ. Sci. Technol. 2008, 42 (13), 4877. doi: 10.1021/es8005964

    15. [15]

      (15) Huang, J. F. Talanta 2009, 77 (5), 1694. doi: 10.1016/j.talanta.2008.10.005

    16. [16]

      (16) Sivasubramanian, R.; Sangaranarayanan, M. V. Talanta 2011, 85 (4), 2142. doi: 10.1016/j.talanta.2011.07.057

    17. [17]

      (17) Oyamatsu, D.; Kanemoto, H.; Kuwabata, S.; Yoneyama, H. J. Electroanal. Chem. 2001, 497 (1-2), 97. doi: 10.1016/S0022-0728(00)00459-9

    18. [18]

      (18) Lin, S. Y.; Tsai, T. K.; Lin, C. M.; Chen, C. H.; Chan, Y. C.; Chen, H.W. Langmuir 2002, 18 (14), 5473. doi: 10.1021/la0157364

    19. [19]

      (19) Gebregziabiher, D. K.; Kim, Y. G.; Thambidurai, C.; Ivanova, V.; Haumesser, P. H.; Stickney, J. L. J. Cryst. Growth 2010, 312 (8), 1271. doi: 10.1016/j.jcrysgro.2009.11.038

    20. [20]

      (20) Lin, S. X.; Shi, X. Z.; Zhang, X.; Kou, H. H.; Wang, C. M. Appl. Surf. Sci. 2010, 256 (13), 4365. doi: 10.1016/j.apsusc.2010.02.032

    21. [21]

      (21) Innocenti, M.; Bellandi, S.; Lastraioli, E.; Loglio, F.; Foresti, M. L. Langmuir 2011, 27 (18), 11704. doi: 10.1021/la202174j

    22. [22]

      (22) Innocenti, M.; Zangari, G.; Zafferoni, C.; Bencistà, I.; Becucci, L.; Lavacchi, A.; Di Benedetto, F.; Bellandi, S.; Vizza, F.; Foresti, M. L. J. Power Sources 2013, 241, 80. doi: 10.1016/j.jpowsour.2013.04.111

    23. [23]

      (23) Bristow, C. A.; Michalitsch, R.; Laibinis, P. E. Electroanalysis 2010, 22 (2), 143. doi: 10.1002/elan.200900288

    24. [24]

      (24) Liu, X. Q.; Wang, X. H.; Zhang, J. M.; Feng, H. Q.; Liu, X. H.; Wong, D. K. Y. Biosens. Bioelectron. 2012, 35 (1), 56. doi: 10.1016/j.bios.2012.02.002

    25. [25]

      (25) Uhm, S. Y.; Chung, S. T.; Lee, J. Y. Electrochem. Commun. 2007, 9 (8), 2027. doi: 10.1016/j.elecom.2007.05.029

    26. [26]

      (26) Lee, J. K.; Jeon, H.; Uhm, S.; Lee, J. Electrochim. Acta 2008, 53 (21), 6089. doi: 10.1016/j.electacta.2008.02.089

    27. [27]

      (27) Varela, A. S.; Schlaup, C.; Jovanov, Z. P.; Malacrida, P.; Horch, S.; Stephens, I. E. L.; Chorkendorff, I. J. Phys. Chem. C 2013, 117 (40), 20500. doi: 10.1021/jp406913f

    28. [28]

      (28) Reske, R.; Duca, M.; Oezaslan, M.; Schouten, K. J. P.; Koper, M. T. M.; Strassert, P. J. Phys. Chem. Lett. 2013, 4 (15), 2410. doi: 10.1021/jz401087q

    29. [29]

      (29) Rudnev, A. V.; Ehrenburg, M. R.; Molodkina, E. B.; Botriakova, I. G.; Danilov, A. I.; Wandlowski, T. Electrocatalysis 2014, 6 (1), 42. doi: 10.1007/s12 678-014-0217-y

    30. [30]

      (30) Zhang, X.; Shi, X. Z.; Ye, W. C.; Ma, C. L.; Wang, C. M. Appl. Phys. A: Mater. Sci. Process. 2009, 94 (2), 381. doi: 10.1007/s00339-008-4815-5

    31. [31]

      (31) Liu, Y. C.; Yang, K. H.; Hsu, T. C. J. Raman Spectrosc. 2009, 40 (8), 903. doi: 10.1002/jrs.2196

    32. [32]

      (32) Mrozek, M. F.; Xie, Y.; Weaver, M. J. Anal. Chem. 2001, 73 (24), 5953. doi: 10.1021/ac0106391

    33. [33]

      (33) Watanabe, M.; Uchida, H.; Ikeda, N. J. Electroanal. Chem. 1995, 380 (1-2), 255. doi: 10.1016/0022-0728(94)03621-9

    34. [34]

      (34) ?osiewicz, B.; Jurczakowski, R.; Lasia, A. Electrochim. Acta 2011, 56 (16), 5746. doi: 10.1016/j.electacta.2011.04.048

    35. [35]

      (35) Sashikata, K.; Furuya, N.; Itaya, K. J. Electroanal. Chem. Interfacial Electrochem. 1991, 316 (1-2), 361. doi: 10.1016/0022-0728(91)87061-8

    36. [36]

      (36) Arbib, M.; Zhang, B.; Lazarov, V.; Stoychev, D.; Milchev, A.; Buess-Herman, C. J. Electroanal. Chem. 2001, 510 (1-2), 67. doi: 10.1016/S0022-0728(01)00545-9

    37. [37]

      (37) Misicak, D.; Ruthenburg, T. C.; Fawcett, W. R. Electrochim. Acta 2010, 55 (26), 7610. doi: 10.1016/j.electacta.2010.04.012

    38. [38]

      (38) Anjos, D. M.; Rigsby, M. A.; Wieckowski, A. J. Electroanal. Chem. 2010, 639 (1-2), 8. doi: 10.1016/j.jelechem.2009.10.003

    39. [39]

      (39) Ra isha, G.A.; Bondarenko, A. S.; Osipovich, N. P.; Streltsov, E. A. J. Electroanal. Chem. 2004, 565 (2), 227. doi: 10.1016/j.jelechem.2003.10.014

    40. [40]

      (40) Vatankhah, G.; Lessard, J.; Jerkiewicz, G.; Zolfaghari, A.; Conway, B. E. Electrochim. Acta 2003, 48 (11), 1613. doi: 10.1016/S0013-4686(03)00083-5

    41. [41]

      (41) Tkac, J.; Davis, J. J. J. Electroanal. Chem. 2008, 621 (1), 117. doi: 10.1016/j.jelechem.2008.04.010

    42. [42]

      (42) Steponavi?ius, A.; Simkunaite, D. Russ. J. Electrochem. 2002, 38 (5), 488. doi: 10.1023/A:1015480926089

    43. [43]

      (43) Li, F. H.; Wang, W.; Gao, J. P.; Wang, S. Y. J. Electrochem. Soc. 2009, 156 (3), D84. doi: 10.1149/1.3049349

    44. [44]

      (44) Alonso, C.; Pascual, M. J.; Abruna, H. D. Electrochim. Acta 1997, 42 (11), 1739. doi: 10.1016/S0013-4686(96)00374-X

    45. [45]

      (45) Machado, S. A. S.; Tanaka, A. A.; nzalez, E. R. Electrochim. Acta 1991, 36 (8), 1325. doi: 10.1016/0013-4686(91)80012-W

    46. [46]

      (46) Lamy-Pitara, E.; Ouazzani-Benhima, L.; Barbier, J.; Cahoreau, M.; Caisso, J. J. Electroanal. Chem. 1994, 372 (1-2), 233. doi: 10.1016/0022-0728(93)03256-O

    47. [47]

      (47) Zhu, W.; Yang, J. Y.; Zhou, D. X.; Bao, S. Q.; Fan, X. A.; Duan, X. K. Electrochim.Acta 2007, 52 (11), 3660. doi: 10.1016/j.electacta.2006.10.028

    48. [48]

      (48) Li, F. H.; Wang, W. J. Appl. Electrochem. 2010, 40 (11), 2005. doi: 10.1007/s10800-010-0180-0

    49. [49]

      (49) Maestre, M. S.; Rodríguez-Amaro, R.; Muñoz, E.; Ruiz, J. J.; Camacho, L. J. Electroanal. Chem. 1994, 373 (1-2), 31. doi: 10.1016/0022-0728(94)03317-X

    50. [50]

      (50) Guo, L.; Hu, G.; Li, W. P.; Zhang, S. T. Chin. J. Appl. Chem. 2013, 30 (2), 214. [郭雷, 胡舸, 李文坡, 张胜涛. 应用化学, 2013, 30 (2), 214.] doi: 10.3724/SP.J.1095.2013.20090

    51. [51]

      (51) Zhu, W.; Yang, J. Y.; Zhou, D. X.; Fan, X. A.; Duan, X. K. Acta Chim. Sin. 2007, 65 (20), 2273. [朱文, 杨君友, 周东祥, 樊希安, 段兴凯. 化学学报, 2007, 65 (20), 2273.]

    52. [52]

      (52) Shi, X. Z.; Zhang, X.; Ma, C. L.; Wang, C. M. J. Solid State Electrochem. 2010, 14 (1), 93. doi: 10.1007/s10008-009-0793-6

    53. [53]

      (53) Jovi?, V. D.; Jovi?, B. M. Electrochim.Acta 2002, 47 (11), 1777. doi: 10.1016/S0013-4686(02)00020-8

    54. [54]

      (54) Kirowa-Eisner, E.; Bonfil, Y.; Tzur, D.; Gileadi, E. J. Electroanal. Chem. 2003, 552, 171. doi: 10.1016/S0022-0728(03)00181-5

    55. [55]

      (55) Jerkiewicz, G.; Perreault, F.; Radovic-Hrapovic, Z. J. Phys. Chem. C 2009, 113(28), 12309. doi: 10.1021/jp900478u

    56. [56]

      (56) Herrero, E.; Abruña, H. D. J. Phys. Chem. B 1998, 102 (2), 444. doi: 10.1021/jp972891b

    57. [57]

      (57) Mascaro, L. H.; Machado, S. A. S.; Avaca, L. A. J. Chem. Soc., Faraday Trans. 1997, 93 (15), 2577. doi: 10.1039/a700607a

    58. [58]

      (58) Futamata, M. Chem. Phys. Lett. 2001, 333 (5), 337. doi: 10.1016/S0009-2614(00)01400-7

    59. [59]

      (59) Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M. Surf. Sci. 2003, 523 (1-2), 199. doi: 10.1016/S0039-6028(02)02456-1

    60. [60]

      (60) Nishihara, C.; Iwata, K.; Tai, T.; Yuasa, M.; Sekine, I.; Nozoye, H. Electrochem. Commun. 1999, 1 (3-4), 104. doi: 10.1016/S1388-2481(99)00017-X

    61. [61]

      (61) Hepel, M. Electroanalysis 2005, 17 (15-16), 1401. doi: 10.1002/elan.200503288

    62. [62]

      (62) Upadhyay, D.; Yegnaraman, V. Mater. Chem. Phys. 2000, 62 (3), 247. doi: 10.1016/S0254-0584(99)00185-6

    63. [63]

      (63) Abaci, S.; Zhang, L. S.; Shannon, C. J. Electroanal. Chem. 2004, 571 (2), 169. doi: 10.1016/j.jelechem.2004.05.006

    64. [64]

      (64) Xu, Z.; Chen, Y.; Zhang, Z.; Zhang, J. Q. Acta Phys. -Chim. Sin. 2015, 31 (7), 1219. [许振, 陈宇, 张昭, 张鉴清. 物理化学学报, 2015, 31 (7), 1219.] doi: 10.3866/PKU.WHXB201505071

    65. [65]

      (65) Alanyalιo?lu, M.; Çakal, H.; Öztürk, A. E.; Demir, Ü. J. Phys. Chem. B 2001, 105 (43), 10588. doi: 10.1021/jp004227s

    66. [66]

      (66) Li, F. H.; Jia, F. L.; Wang, W. Appl. Surf. Sci. 2009, 255 (16), 7394. doi: 10.1016/j.apsusc.2009.04.007

    67. [67]

      (67) Martínez-Ruíz, A.; Palomar-Pardavé, M.; Valenzuela-Benavides, J.; Farías, M. H.; Batina, N. J. Phys. Chem. B 2003, 107 (42), 11660. doi: 10.1021/jp027197x

    68. [68]

      (68) Ataka, K.; Nishina, G.; Cai, W. B.; Sun, S. G.; Osawa, M. Electrochem. Commun. 2000, 2 (6), 417. doi: 10.1016/S1388-2481(00)00053-9

    69. [69]

      (69) Cabral, M. F.; Coelho, D.; Machado, S. A. S. Electrochim. Acta 2013, 91, 361. doi: 10.1016/j.electacta.2012.12.084

    70. [70]

      (70) Engelsmann, K.; Lorenz, W. J.; Schmidt, E. J. Electroanal. Chem. Interfacial Electrochem. 1980, 114 (1), 11. doi: 10.1016/S0022-0728(80)80432-3

    71. [71]

      (71) Klimmeck, M.; Jüttner, K. Electrochim. Acta 1982, 27 (1), 83. doi: 10.1016/0013-4686(82)80064-9

    72. [72]

      (72) Cao, C. N.; Zhang, J. Q. An Introduction to Electrochemical Impedance Spectroscopy; Science Press: Beijing, 2002; pp 37-38. [曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 37-38.]

    73. [73]

      (73) Huang, M. H.; Henry, J. B.; Fortgang, P.; Henig, J.; Plumeré, N.; Bandarenka, A. S. RSC Adv. 2012, 2 (29), 10994. doi: 10.1039/c2ra21558f

    74. [74]

      (74) Berkes, B. B.; Maljusch, A.; Schuhmann, W.; Bandarenka, A. S. J. Phys. Chem. C 2011, 115 (18), 9122. doi: 10.1021/jp200755p

    75. [75]

      (75) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Chemical Industry Press: Beijing, 2005; pp 419, 458-463, 505; translated by Shao, Y. H., Zhu, G. Y., Dong, X. D., Zhang, B. L. [Bard, A. J., Faulkner, L. R. 电化学方法: 原理和应用, 第二版. 邵元华, 朱果逸, 董献堆, 张柏林, 译. 北京: 化学工业出版社, 2005: 419, 458-463, 505.]

    76. [76]

      (76) Ra isha, G. A.; Bondarenko, A. S. Solid State Phenom. 2003, 90-91, 103. doi: 10.4028/www.scientific.net/SSP.90-91.103

    77. [77]

      (77) Ra isha, G. A.; Bondarenko, A. S. Electrochem. Commun. 2003, 5 (5), 392. doi: 10.1016/S1388-2481(03)00075-4

    78. [78]

      (78) Ra isha, G. A.; Bondarenko, A. S. Surf. Sci. 2004, 566, 315. doi: 10.1016/j.susc.2004.05.061

    79. [79]

      (79) Ra isha, G. A.; Bondarenko, A. S. Electrochim. Acta 2005, 50 (7-8), 1553. doi: 10.1016/j.electacta.2004.10.055

    80. [80]

      (80) Yoo, J. S.; Park, S. M. Anal. Chem. 2000, 72 (9), 2035. doi: 10.1021/ac9907540

    81. [81]

      (81) Chang, B. Y.; Ahn, E.; Park, S. M. J. Phys. Chem. C 2008, 112 (43), 16902. doi: 10.1021/jp805960j

    82. [82]

      (82) Kowalik, R.; ?abiński, P.; Mech, K. Electrochem. Commun. 2013, 31, 49. doi: 10.1016/j.elecom.2013.03.009

    83. [83]

      (83) Sauerbrey, G. Z. Physik. 1959, 155 (2), 206. doi: 10.1007/BF01337937

    84. [84]

      (84) Jia, Z.; Dai, C. S.; Chen, L. Electrochemistry Measurement Methods; Chemical Industry Press: Beijing, 2006; pp 199, 204-205, 234. [贾铮, 戴长松, 陈玲. 电化学测量方法. 北京: 化学工业出版社, 2006: 199, 204-205, 234.]

    85. [85]

      (85) Lin, P. F. Electrochemical Quartz Crystal Microbalance Study of Bismuth Underpotential Deposition on Ruthenium and on Electrochemically Formed Ruthenium Oxide. Master Dissertation, University of North Texas, Texas, 2011.

    86. [86]

      (86) Inzelt, G. Investigation of Adsorption, Underpotential Deposition andFilmFor mation Processes with the Electrochemical Quartz Crystal Nanobalance. Ph. D. Dissertation, Eötvös Loránd University, Budapest, 2013.

    87. [87]

      (87) Chen, G. L. Application of EQCM to Some Electrochemical Systems. Ph. D. Dissertation, Xiamen University, Xiamen, 2008. [陈国良. EQCM 在若干电化学体系研究中的应用 [D]. 厦门: 厦门大学, 2008.]

    88. [88]

      (88) Bruckenstein, S.; Swathirajan, S. Electrochim. Acta 1985, 30 (7), 851. doi: 10.1016/0013-4686(85)80140-7

    89. [89]

      (89) Santos, M. C.; Miwa, D.W.; Machado, S. A. S. Electrochem. Commun. 2000, 2 (10), 692. doi: 10.1016/S1388-2481(00)00102-8

    90. [90]

      (90) Santos, M. C.; Machado, S. A. S. J. Electroanal. Chem. 2004, 567 (2), 203. doi: 10.1016/j.jelechem.2003.12.026

    91. [91]

      (91) Santos, M. C.; Machado, S. A. S. Electrochim. Acta 2005, 50 (11), 2289. doi: 10.1016/j.electacta.2004.10.040

    92. [92]

      (92) Calegaro, M. L.; Santos, M. C.; Miwa, D.W.; Machado, S. A. S. Surf. Sci. 2005, 579 (1), 58. doi: 10.1016/j.susc.2005.01.045

    93. [93]

      (93) Santos, M. C.; Cabral, M. F.; Machado, S. A. S. Electrochim. Acta 2011, 58, 1. doi: 10.1016/j.electacta.2011.07.098

    94. [94]

      (94) Shin, J.W.; Bertocci, U.; Stafford, G. R. J. Phys. Chem. C 2010, 114 (41), 17621. doi: 10.1021/jp1034486

    95. [95]

      (95) Nicic, I.; Liang, J.; Cammarata, V.; Alanyalioglu, M.; Demir, Ü .; Shannon, C. J. Phys. Chem. B 2002, 106 (47), 12247. doi: 10.1021/jp026625w

    96. [96]

      (96) Méndez, P. F.; Lopez, J. R.; Meas, Y.; Ortega, R.; Salgado, L.; Trejo, G. Electrochim.Acta 2005, 50 (14), 2815. doi: 10.1016/j.electacta.2004.11.029

    97. [97]

      (97) Yan, J.W. In-situ Scanning Tunneling Microscopy Studies on the Sn Underpotential Deposition and Surface Alloying. Ph. D. Dissertation, Xiamen University, Xiamen, 2001. [颜佳伟. 金属锡欠电位沉积及表面合金化的现场扫描隧道显微镜研究 [D]. 厦门: 厦门大学, 2001.]

    98. [98]

      (98) Hernandez, F.; Baltruschat, H. Langmuir 2006, 22 (10), 4877. doi: 10.1021/la 053257p

    99. [99]

      (99) Tang, J.; Petri, M.; Kibler, L. A.; Kolb, D. M. Electrochim. Acta 2005, 51 (1), 125. doi: 10.1016/j.electacta.2005.04.009

    100. [100]

      (100) Yanson, Y.; Frenken, J.W. M.; Rost, M. J. Phys. Chem. Chem. Phys. 2011, 13 (35), 16095. doi: 10.1039/c1cp20886a

    101. [101]

      (101) Mao, B.W.; Tang, J.; Randler, R. Langmuir 2002, 18 (14), 5329. doi: 10.1021/la011327w

    102. [102]

      (102) García, S. G.; Salinas, D. R.; Staikov, G. Surf. Sci. 2005, 576 (1-3), 9. doi: 10.1016/j.susc.2004.11.037

    103. [103]

      (103) Sackmann, J.; Bunk, A.; Pötzschke, R. T.; Staikov, G.; Lorenz, W. J. Electrochim. Acta 1998, 43 (19-20), 2863. doi: 10.1016/S0013-4686(98)00027-9

    104. [104]

      (104) Hayden, B. E.; Nandhakumar, I. S. J. Phys. Chem. B 1997, 101 (39), 7751. doi: 10.1021/jp970565q

    105. [105]

      (105) Wu, H. C.; Yau, S. L. J. Phys. Chem. B 2001, 105 (29), 6965. doi: 10.1021/jp010666v

    106. [106]

      (106) Yan, J .W.; Wu, J. M.; Wu, Q.; Xie, Z. X.; Mao, B.W. Langmuir 2003, 19 (19), 7948. doi: 10.1021/la034500s

    107. [107]

      (107) Fu, Y. C.; Yan, J.W.; Wang, Y.; Tian, J. H.; Zhang, H. M.; Xie, Z. X.; Mao, B.W. J. Phys. Chem. C 2007, 111 (28), 10467. doi: 10.1021/jp0711621

    108. [108]

      (108) Gasparotto, L. H. S.; Borisenko, N.; Bocchi, N.; El Abedin, S. Z.; Endres, F. Phys. Chem. Chem. Phys. 2009, 11 (47), 11140. doi: 10.1039/b916809e

    109. [109]

      (109) Chen, C. H.; Washburn, N.; Gewirth, A. A. J. Phys. Chem. 1993, 97 (38), 9754. doi: 10.1021/j100140a036

    110. [110]

      (110) Vidu, R.; Hara, S. J. Electroanal. Chem. 1999, 475 (2), 171. doi: 10.1016/S0022-0728(99)00354-X

    111. [111]

      (111) Vidu, R.; Hara, S. J. Vac. Sci. Technol. B 1999, 17 (6), 2423. doi: 10.1116/1.591105

    112. [112]

      (112) Takami, S.; Jennings, G. K.; Laibinis, P. E. Langmuir 2001, 17 (2), 441. doi: 10.1021/la0010931

    113. [113]

      (113) Hirai, N.; Takeda, K.; Hara, S.; Shiota, M.; Yamaguchi, Y.; Nakayama, Y. J. Power Sources 2003, 113 (2), 329. doi: 10.1016/S0378-7753(02)00545-1

    114. [114]

      (114) Quinet, M.; Lallemand, F.; Ricq, L.; Hihn, J. Y.; Delobelle, P. Surf. Coat. Technol. 2010, 204 (20), 3108. doi: 10.1016/j.surfcoat.2010.01.025

    115. [115]

      (115) Chen, C. H.; Vesecky, S. M.; Gewirth, A. A. J. Am. Chem. Soc. 1992, 114 (2), 451. doi: 10.1021/ja00028a009

    116. [116]

      (116) Yano, J.; Yachandra, V. K. Photosynth. Res. 2009, 102, 241. doi: 10.1007/s11120-009-9473-8

    117. [117]

      (117) Bressler, C.; Chergui, M. Chem. Rev. 2004, 104 (4), 1781. doi: 10.1021/cr0206667

    118. [118]

      (118) Lee, J. R. I.; O'Malley, R. L.; O'Connell, T. J.; Vollmer, A.; Rayment, T. Electrochim. Acta 2010, 55 (28), 8532. doi: 10.1016/j.electacta.2010.07.046

    119. [119]

      (119) Lee, J. R. I.; O'Malley, R. L.; O'Connell, T. J.; Vollmer, A.; Rayment, T. J. Phys. Chem. C 2009, 113 (28), 12260. doi: 10.1021/jp8099412

    120. [120]

      (120) Soldo, Y.; Sibert, E.; Tourillon, G.; Hazemann, J. L.; Lévy, J. P.; Aberdam, D.; Faure, R.; Durand, R. Electrochim. Acta 2002, 47 (19), 3081. doi: 10.1016/S0013-4686(02)00227-X

    121. [121]

      (121) Price, S.W. T.; Speed, J. D.; Kannan, P.; Russell, A. E. J. Am. Chem. Soc. 2011, 133 (48), 19448. doi: 10.1021/ja206763e

    122. [122]

      (122) Seo, M.; Fushimi, K.; Aoki, Y.; Habazaki, H.; Inaba, M.; Yokomizo, M.; Hayakawa, T.; Nakayama, T. J. Electroanal. Chem. 2012, 671, 7. doi: 10.1016/j.jelechem.2012.02.019

    123. [123]

      (123) Seo, M.; Habazaki, H.; Inaba, M.; Yokomizo, M.; Wakabayashi, T.; Nakayama, T. J. Electrochem. Soc. 2014, 161 (4), H195. doi: 10.1149/2.044404jes

    124. [124]

      (124) Markovi?, N. M.; Grgur, B. N.; Lucas, C. A.; Ross, P. N. J. Electroanal. Chem. 1998, 448 (2), 183. doi: 10.1016/S0022-0728(97)00012-0

    125. [125]

      (125) Randler, R. J.; Kolb, D. M.; Ocko, B. M.; Robinson, I. K. Surf. Sci. 2000, 447 (1-3), 187. doi: 10.1016/S0039-6028(99)01170-X

    126. [126]

      (126) Ball, M.; Lucas, C. A.; Markovic, N. M.; Murphy, B. M.; Steadman, P.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N. Langmuir 2001, 17 (19), 5943. doi: 10.1021/la010192r

    127. [127]

      (127) Kondo, T.; Morita, J.; Okamura, M.; Saito, T.; Uosaki, K. J. Electroanal. Chem. 2002, 532 (1-2), 201. doi: 10.1016/S0022-0728(02)00705-2

    128. [128]

      (128) Kondo, T.; Takakusagi, S.; Uosaki, K. Electrochem. Commun. 2009, 11 (4), 804. doi: 10.1016/j.elecom.2009.01.036

    129. [129]

      (129) Zhou,W. P.; Kibler, L. A.; Kolb, D. M. Electrochim. Acta 2002, 47 (28), 4501. doi: 10.1016/S0013-4686(02)00522-4

    130. [130]

      (130) Zhou,W. P.; Kibler, L. A.; Kolb, D. M. Electrochim. Acta 2004, 49 (27), 5007. doi: 10.1016/j.electacta.2004.06.016

    131. [131]

      (131) Anjos, D.; Rigsby, M.;Wieckowski, A. ECS Trans. 2010, 28 (19), 47. doi: 10.1149/1.3491362

    132. [132]

      (132) Inukai, J.; Osawa, Y.;Wakisaka, M.; Sashikata, K.; Kim, Y. G.; Itaya, K. J. Phys. Chem. B 1998, 102 (18), 3498. doi: 10.1021/jp9804143

    133. [133]

      (133) Markovi?, N. M.; Gasteiger, H. A.; Lucas, C. A.; Tidswell, I. M.; Ross, P. N. Surf. Sci. 1995, 335 (1-3), 91. doi: 10.1016/0039-6028(95)00452-1

    134. [134]

      (134) Mendoza-Huizar, L. H.; Rios-Reyes, C. H. J. Solid State Electrochem. 2011, 15 (4), 737. doi: 10.1007/s10008-010-1146-1

    135. [135]

      (135) Seo, M.; Yamazaki, M. J. Electrochem. Soc. 2004, 151 (8), E276. doi: 10.1149/1.1766310

    136. [136]

      (136) Seo, M.; Yamazaki, M. J. Solid State Electrochem. 2007, 11 (10), 1365. doi: 10.1007/s10008-007-0294-4

    137. [137]

      (137) Shin, J.W.; Bertocci, U.; Stafford, G. R. J. Phys. Chem. C 2010, 114 (17), 7926. doi: 10.1021/jp100357r

    138. [138]

      (138) Wei, Z. D.; Atsushi, M.; Tadayoshi, O.; Masatoshi, O. Acta Phys. -Chim. Sin. 2002, 18 (12), 1120. [魏子栋, 三木敦史, 大森唯义, 大泽雅俊. 物理化学学报, 2002, 18 (12), 1120.] doi: 10.3866/PKU.WHXB20021213

    139. [139]

      (139) Wei, Z. D.; Li, L. L.; Luo, Y. H.; Yan, C.; Sun, C. X.; Yin, G. Z.; Shen, P. K. J. Phys. Chem. B 2006, 110 (51), 26055. doi: 10.1021/jp0651891

    140. [140]

      (140) Li, L. L.;Wei, Z. D.; Yan, C.; Luo, Y. H.; Yin, G. Z.; Sun, C. X. Acta Phys. -Chim. Sin. 2007, 23 (5), 723. [李兰兰, 魏子栋, 严灿, 罗义辉, 尹光志, 孙才新. 物理化学学报, 2007, 23 (5), 723.] doi: 10.3866/PKU.WHXB20070519

    141. [141]

      (141) Liu, Y. H.; kcen, D.; Bertocci, U.; Moffat, T. P. Science 2012, 338 (6112), 1327. doi: 10.1126/science.1228925

    142. [142]

      (142) Brankovic, S. R.;Wang, J. X.; Ad?i?, R. R. Surf. Sci. 2001, 474 (1-3), L173. doi: 10.1016/S0039-6028(00)01103-1

    143. [143]

      (143) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315 (5809), 220. doi: 10.1126/science.1134569

    144. [144]

      (144) Yu, Y. L.; Hu, Y. P.; Liu, X.W.; Deng,W. Q.;Wang, X. Electrochim. Acta 2009, 54 (11), 3092. doi: 10.1016/j.electacta.2008.12.004

    145. [145]

      (145) Khosravi, M.; Amini, M. K. Int. J. Hydrog. Energy 2010, 35 (19), 10527. doi: 10.1016/j.ijhydene.2010.07.136

    146. [146]

      (146) Zhang, G. P.; Kuang, Y. F.; Liu, J. P.; Cui, Y. Q.; Chen, J. H.; Zhou, H. H. Electrochem. Commun. 2010, 12 (9), 1233. doi: 10.1016/j.elecom.2010.06.027

    147. [147]

      (147) Humbert, M. P.; Smith, B. H.;Wang, Q.; Ehrlich, S. N.; Shao, M. H. Electrocatalysis 2012, 3 (3-4), 298. doi: 10.1007/s12678-012-0103-4

    148. [148]

      (148) Kiani, A.; Fard, E. N. Electrochim. Acta 2009, 54 (28), 7254. doi: 10.1016/j.electacta.2009.07.037

    149. [149]

      (149) Jin, Y. D.; Shen, Y.; Dong, S. J. J. Phys. Chem. B 2004, 108 (24), 8142. doi: 10.1021/jp0375517

    150. [150]

      (150) Huang, M. H.; Jin, Y. D.; Jiang, H. Q.; Sun, X. P.; Chen, H. J.; Liu, B. F.;Wang, E. K.; Dong, S. J. J. Phys. Chem. B 2005, 109 (32), 15264. doi: 10.1021/jp051612e

    151. [151]

      (151) Nutariya, J.; Fayette, M.; Dimitrov, N.; Vasiljevic, N. Electrochim. Acta 2013, 112, 813. doi: 10.1016/j.electacta.2013.01.052

    152. [152]

      (152) Su, X.; Zhan, X.; Hinds, B. J. J. Mater. Chem. 2012, 22 (16), 7979. doi: 10.1039/c2jm15395e

    153. [153]

      (153) Yancey, D. F.; Carino, E. V.; Crooks, R. M. J. Am. Chem. Soc. 2010, 132 (32), 10988. doi: 10.1021/ja104677z

    154. [154]

      (154) Zhao, J.; Sun, Y.; Li, Y. J.; Liang, R. Acta Phys. -Chim. Sin. 2011, 27 (8), 1868. [赵静, 孙越, 李永军, 梁韧. 物理化学学报, 2011, 27 (8), 1868.] doi: 10.3866/PKU.WHXB20110803

    155. [155]

      (155) Öznülüer, T.; Erdogan, I.; ?i?man, ?.; Demir, Ü. Chem. Mater. 2005, 17 (5), 935. doi:10.1021/cm048246g

    156. [156]

      (156) Öznülüer, T.; Erdogan, I.; Demir, Ü. Langmuir 2006, 22 (9), 4415. doi: 10.1021/la052404g

    157. [157]

      (157) ?i?man, ?.; Alanyal?o?lu, M.; Demir, Ü. J. Phys. Chem. C 2007, 111 (6), 2670. doi: 10.1016/jp066393r

    158. [158]

      (158) Erdo?an, ?. Y.; Demir, Ü. J. Electroanal. Chem. 2009, 633 (1), 253. doi: 10.1016/j.jelechem.2009.06.010

    159. [159]

      (159) Lai, Y. Q.; Liu, F. Y.; Zhang, Z. A.; Liu, J.; Li, Y.; Kuang, S. S.; Li, J.; Liu, Y. X. Electrochim. Acta 2009, 54 (11), 3004. doi: 10.1016/j.electacta.2008.12.016

    160. [160]

      (160) Kröger, F. A. J. Electrochem. Soc. 1978, 125 (12), 2028. doi: 10.1149/1.2131357

    161. [161]

      (161) Kowalik, R.; ?abiński, P.; Fitzner, K. Electrochim. Acta 2008, 53 (21), 6184. doi: 10.1016/j.electacta.2007.12.009

    162. [162]

      (162) Kowalik, R.; Fitzner, K. J. Electroanal. Chem. 2009, 633 (1), 78. doi: 10.1016/j.jelechem.2009.04.029

    163. [163]

      (163) Kowalik, R.; Szaci?owski, K.; ?abiński, P. J. Electroanal. Chem. 2012, 674, 108. doi: 10.1016/j.jelechem.2012.03.002

    164. [164]

      (164) Biçer, M.; Ayd?n, A. O.; ?i?man, ?. Electrochim. Acta 2010, 55 (11), 3749. doi: 10.1016/j.electacta.2010.02.015

    165. [165]

      (165) Ivanou, D. K.; Ivanova, Y. A.; Lisenkov, A. D.; Zheludkevich, M. L.; Streltsov, E. A. Electrochim. Acta 2012, 77, 65. doi: 10.1016/j.electacta.2012.05.061

    166. [166]

      (166) Brand, M.; Eshkenazi, I.; Kirowa-Eisner, E. Anal. Chem. 1997, 69 (22), 4660. doi: 10.1021/ac970420f

    167. [167]

      (167) Kirowa-Eisner, E.; Brand, M.; Tzur, D. Anal. Chim. Acta 1999, 385 (1-3), 325. doi: 10.1016/S0003-2670(98)00663-1

    168. [168]

      (168) Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Anal. Chim. Acta 2002, 464 (1), 99. doi: 10.1016/S0003-2670(02)00489-0

    169. [169]

      (169) Bonfil, Y.; Kirowa-Eisner, E. Anal. Chim. Acta 2002, 457 (2), 285. doi: 10.1016/S0003-2670(02)00016-8

    170. [170]

      (170) Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Anal. Chim. Acta 1999, 387 (1), 85. doi:10.1016/S0003-2670(99)00066-5

    171. [171]

      (171) Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Anal. Chim. Acta 2000, 424 (1), 65. doi: 10.1016/S0003-2670(00)01074-6

    172. [172]

      (172) Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Electroanalysis 2003, 15 (17), 1369. doi: 10.1002/elan.200302739

    173. [173]

      (173) Gre ry, B.W.; Stickney, J. L. J. Electroanal. Chem. Interfacial Electrochem. 1991, 300 (1-2), 543. doi: 10.1016/0022-0728(91)85415-L

    174. [174]

      (174) Gre ry, B.W.; Suggs, D.W.; Stickney, J. L. J. Electrochem. Soc. 1991, 138 (5), 1279. doi: 10.1149/1.2085773

    175. [175]

      (175) Kim, Y. G.; Kim, J. Y.; Vairavapandian, D.; Stickney, J. L. J. Phys. Chem. B 2006, 110 (36), 17998. doi: 10.1021/jp063766f

    176. [176]

      (176) Muthuvel, M.; Stickney, J. L. Langmuir 2006, 22 (12), 5504. doi: 10.1021/la 053353q

    177. [177]

      (177) Innocenti, M.; Forni, F.; Pezzatini, G.; Raiteri, R.; Loglio, F.; Foresti, M. L. J. Electroanal. Chem. 2001, 514 (1-2), 75. doi: 10.1016/S0022-0728(01)00620-9

    178. [178]

      (178) Vaidyanathan, R.; Stickney, J. L.; Happek, U. Electrochim. Acta 2004, 49 (8), 1321. doi: 10.1016/j.electacta.2003.07.019

    179. [179]

      (179) Zhu,W.; Yang, J. Y.; Gao, X. H.; Bao, S. Q.; Fan, X. A.; Zhang, T. J.; Cui, K. Electrochim. Acta 2005, 50 (20), 4041. doi: 10.1016/j.electacta.2005.01.003

    180. [180]

      (180) Zhu,W.; Yang, J. Y.; Gao, X. H.; Hou, J.; Bao, S. Q.; Fan, X. A. Electrochim.Acta 2005, 50 (27), 5465. doi: 10.1016/j.electacta.2005.03.028

    181. [181]

      (181) Zhu,W.; Yang, J. Y.; Hou, J.; Gao, X. H.; Bao, S. Q.; Fan, X. A. J. Electroanal. Chem. 2005, 585 (1), 83. doi: 10.1016/j.jelechem.2005.07.016

    182. [182]

      (182) Yang, J. Y.; Zhu,W.; Gao, X. H.; Bao, S. Q.; Fan, M.; Duan, X. K.; Hou, J. J. Phys. Chem. B 2006, 110 (10), 4599. doi: 10.1021/jp0565498

    183. [183]

      (183) Loglio, F.; Innocenti, M.; Jarek, A.; Caporali, S.; Pasquini, I.; Foresti, M. L. J. Electroanal. Chem. 2010, 638 (1), 15. doi: 10.1016/j.jelechem.2009.10.027

    184. [184]

      (184) Foresti, M. L.; Milani, S.; Loglio, F.; Innocenti, M.; Pezzatini, G.; Cattarin, S. Langmuir 2005, 21 (15), 6900. doi: 10.1021/la050176k

    185. [185]

      (185) Liu, Y.; Bliznakov, S.; Dimitrov, N. J. Phys. Chem. C 2009, 113 (28), 12362. doi: 10.1021/jp901536f

    186. [186]

      (186) Rouya, E.; Cattarin, S.; Reed, M. L.; Kelly, R. G.; Zangari, G. J. Electrochem. Soc. 2012, 159 (4), K97. doi: 10.1149/2.097204jes

    187. [187]

      (187) Green, C. L.; Kucernak, A. J. Phys. Chem. B 2002, 106 (44), 11446. doi: 10.1021/jp020859y

    188. [188]

      (188) Green, C. L.; Kucernak, A. J. Phys. Chem. B 2002, 106 (5), 1036. doi: 10.1021/jp0131931

    189. [189]

      (189) Bo lowski, N.; Nagel, T.; Lanova, B.; Ernst, S.; Baltruschat, H.; Nagabhushana, K. S.; Boennemann, H. J. Appl. Electrochem. 2007, 37 (12), 1485. doi: 10.1007/s10800-007-9378-1

    190. [190]

      (190) Ruvinsky, P. S.; Pronkin, S. N.; Zaikovskii, V. I.; Bernhardt, P.; Savinova, E. R. Phys. Chem. Chem. Phys. 2008, 10 (44), 6665. doi: 10.1039/b803703e

    191. [191]

      (191) Tang,W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E.W. J. Phys. Chem. C 2009, 113 (12), 5014. doi: 10.1021/jp8089209

    192. [192]

      (192) Voiry, D.; Yamaguchi, H.; Li, J.W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.W.; Asefa, T.; Shenoy, V. B.; Eda, G. Nat. Mater. 2013, 12 (9), 850. doi: 10.1038/NMAT3700

    193. [193]

      (193) Wang, Y.; Laborda, E.; Salter, C.; Crossley, A.; Compton, R. G. Analyst 2012, 137 (20), 4693. doi: 10.1039/c2an36050k

    194. [194]

      (194) Singh, P.; Buttry, D. A. J. Phys. Chem. C 2012, 116 (19), 10656. doi: 10.1021/jp301676n


  • 加载中
    1. [1]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    2. [2]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(418)
  • Abstract views(468)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return