Citation: DING Dan-Dan, XU Xuan, WU Zi-Wen, ZHOU Wo-Hua, CHEN Rong, XU Zhi-Guang. Coordination Structures of Metal String Complexes (n, m)[Cr3(PhPyF)4Cl2](n=2, 3, 4; m=2, 1, 0) and Relationship with External Electric Field[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1323-1330. doi: 10.3866/PKU.WHXB201505143 shu

Coordination Structures of Metal String Complexes (n, m)[Cr3(PhPyF)4Cl2](n=2, 3, 4; m=2, 1, 0) and Relationship with External Electric Field

  • Received Date: 19 March 2015
    Available Online: 14 May 2015

    Fund Project: 广东省自然科学资金项目(S2012010008763) (S2012010008763) 广东省教育部产学研项目(2010B090400184) (2010B090400184)广州市科技攻关项目(2011J4300063)资助 (2011J4300063)

  • The coordination structures of metal string complexes (n, m)[Cr3(PhPyF)4Cl2] (HPhPyF=N, N'- phenylpyridylformamidine; n=2, 3, 4; m=2, 1, 0) with potential applications as molecular wires have been investigated using the density functional theory BP86 method by considering the effects of an external electric field (EF). Herein, n and m represent the number of benzene rings on the left and right in the PhPyF- ligand, respectively. The results show that: (1) under zero field, the three kinds of coordination modes ((2, 2), (3, 1), (4, 0)) of the four PhPyF- ligands are close in energy, which indicates that they are competitive conformations. The (2, 2) coordination mode is the most stable one. The Cl axial ligands on the two sides of (4, 0) can coordinate to Cr atoms, indicating that these two axial ligands can combine with electrodes. Moreover, the Cl4― Cr1 bond is stronger than Cl5―Cr3, different from (4, 0) [CuCuM(npa)4Cl] [PF6] (M=Pd, Pt; 2- naphthyridylphenylamine) in which the axial ligand Cl close to benzene cannot coordinate to metal atom M. (2) There is a 3-center-3-electron delocalization σ bond in the Cr36 + chain for (2, 2), (3, 1), and (4, 0), but the delocalization gradually weakens. The polarity from Cl4 to Cl5 is stronger as the coordination mode of four PhPyF- ligands becomes more consistent. (3) The geometry and electronic structure of the investigated complexes change regularly under the electric field. Because the electron transfer direction of (3, 1) and (4, 0) is the same as its molecular polarity, the bond length, spin density, charge and energy gap are more sensitive to -Z electric field. Therefore, the -Z elelctric field is beneficial to the conductivity of the molecules. Moreover, the sensitivity of the structures to electric field increases with polarity.

  • 加载中
    1. [1]

      (1) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119 (42), 10223. doi: 10.1021/ja971998+

    2. [2]

      (2) Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. J. Am. Chem. Soc. 2004, 126 (22), 7082. doi: 10.1021/ja049055h

    3. [3]

      (3) Cotton, F. A.; Lei, P.; Murillo, C. A. Inorg. Chem. Acta 2003, 349, 173. doi: 10.1016/S0020-1693(03)00093-8

    4. [4]

      (4) Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Wang, R. R.; Liu, I. P. C.; Yeh, C. Y.; Peng, S. M. Dalton Trans. 2007, No. 27, 2898.

    5. [5]

      (5) Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 40 (12), 2778.

    6. [6]

      (6) Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. Chem. Soc. Chem. Commun. 1994, No. 20, 2377.

    7. [7]

      (7) Aduldecha, S.; Hathaway, B. Chem. Soc. Dalton Trans. 1991, No. 4, 993.

    8. [8]

      (8) Alaná Pinkerton, A. Chem. Soc. Chem. Commun. 1991, No. 2, 84.

    9. [9]

      (9) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. Chem. Commun. 1996, No. 3, 315.

    10. [10]

      (10) Nippe, M.; Berry, J. F. J. Am. Chem. Soc. 2007, 129 (42), 12684. doi: 10.1021/ja076337j

    11. [11]

      (11) Nippe, M.; Turov, Y.; Berry, J. F. Inorg. Chem. 2011, 50 (21), 10592. doi: 10.1021/ic2011309

    12. [12]

      (12) Clerac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A. Inorg. Chem. 2000, 39 (4), 752. doi: 10.1021/ic991022t

    13. [13]

      (13) Liu, I. P. C.; Chen, C. H.; Chen, C. F.; Lee, G. H.; Peng, S. M. Chem. Commun. 2009, No. 5, 577.

    14. [14]

      (14) Lin, S. Y.; Chen, I.W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.; Lin, T.W.; Peng, S. M. J. Chem. Phys. B 2004, 108 (3), 959. doi: 10.1021/jp035415w

    15. [15]

      (15) Tsai, T.W.; Huang, Q. R.; Peng, S. M.; Jin, B. Y. J. Chem. Phys. C 2010, 114 (8), 3641. doi: 10.1021/jp907893q

    16. [16]

      (16) Clerac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Pascual, I. Inorg. Chem. 2000, 39 (4), 748. doi: 10.1021/ic990793u

    17. [17]

      (17) Cotton, F. A.; Lei, P.; Murillo, C. A.; Wang, L. S. Inorg. Chem. Acta 2003, 349, 165. doi: 10.1016/S0020-1693(03)00092-6

    18. [18]

      (18) Ye, Y. F.; Zhang, M. L.; Zhao, J.W. J. Mol. Struct. –Theochem 2007, 822 (1-3), 12. doi: 10.1016/j.theochem.2007.07.007

    19. [19]

      (19) Li, Y.W.; Zhang, Y.; Yi, G. P.; Zhao, J.W. Chem. J. Chin. Univ. 2006, 27 (2), 292. [李延伟, 章岩, 尹鸽平, 赵健伟. 高等学校化学学报, 2006, 27 (2), 292.]

    20. [20]

      (20) Glendening, E. D.; Reed, A. E. Gaussain 03, Version B.04; Gaussian Inc.: Pittsburgh, PA, 2005.

    21. [21]

      (21) El-Hendawy, M. M.; El-Nahas, A. M.; Awad, M. K. J. Chem. Phys. C 2010, 114 (49), 21728. doi: 10.1021/jp107014g

    22. [22]

      (22) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al.; Gaussian 03, Version B.04[CP]; Gaussian Inc.: Pittsburgh, PA, 2003.

    23. [23]

      (23) Zhang, X. H.; Li, Q.; Xie, Y. M. Dalton Trans. 2008, No. 35, 4805.

    24. [24]

      (24) Hsiao, C. J.; Lai, S. H.; Chen, I. C.; Wang, W. Z.; Peng, S. M. J. Chem. Phys. A 2008, 112 (51), 13528. doi: 10.1021/jp8081326

    25. [25]

      (25) Rohmer, M. M.; Bénard, M. J. Clust. Sci. 2002, 13 (3), 333. doi: 10.1023/A:1020546915168

    26. [26]

      (26) Tan, Y.; Huang, X.; Xu, X.; Xu, Z. G. Chem. J. Chin. Univ. 2012, 33, 1278. [谭莹, 黄晓, 许旋, 徐志广. 高等学校化学学报, 2012, 33, 1278.]

    27. [27]

      (27) Huang, Y.; Huang, X.; Xu, X. Acta Phys. -Chim. Sin. 2013, 29 (6), 1225. [黄燕, 黄晓, 许旋. 物理化学学报, 2013, 29 (6), 1225.] doi: 10.3866/PKU.WHXB201303181

    28. [28]

      (28) Luo, K. G.; Tan, Y.; Xu, X.; Xu, Z. G. Inorg. Chim. Acta 2014, 421, 310. doi: 10.1016/j.ica.2014.06.003

    29. [29]

      (29) Huang, X.; Tan, Y.; Xu, X.; Xu, Z. G. Acta Chim. Sin. 2012, 70 (18), 1979. [黄晓, 谭莹, 许旋, 徐志广. 化学学报, 2012, 70 (18), 1979.] doi: 10.6023/A12030051

    30. [30]

      (30) Georgiev, V. P.; McGrady, J. E. J. Am. Chem. Soc. 2011, 133 (32), 12590. doi: 10.1021/ja2028475


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    13. [13]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    14. [14]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    15. [15]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    16. [16]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(278)
  • Abstract views(450)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return