Citation:
WU Na, LUO Qun, WU Zhen-Wu, MA Chang-Qi. Influence of Electrode Interfacial Buffer Layers on Thermal Stability of P3HT:PC61BM Solar Cells[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1413-1420.
doi:
10.3866/PKU.WHXB201505142
-
The high-temperature thermal stability of solution-processed polymer solar cells is a key issue that determines the feasibility of further thermal encapsulation processes, such as thermal lamination or hightemperature atomic layer deposition. In this article, polymer solar cells with poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) or MoO3 as the anode buffer layer (ABL) and ZnO or LiF as the cathode buffer layer (CBL) were fabricated with a device structure of indium tin oxide (ITO)/ABL/poly(3-hexylthiophene): phenyl- C61- butyric acid methyl ester (P3HT:PC61BM)/CBL/Al. Device performances, especially the hightemperature thermal stability of the devices, were studied in detail. The results indicated that the thermal stability of the organic solar cells was highly dependent on the buffer layer material. Devices with MoO3 as ABL and ZnO as CBL showed high thermal stability at a temperature of 120-150 ℃, which ensures the possibility of subsequent thermal processing. In addition, the use of ZnO as the cathode buffer layer could also improve longterm device stability.
-
-
-
[1]
(1) Ye, L.; Zhang, S. Q.; Zhao, W. C.; Yao, H. F.; Hou, J. H. Chem. Mater. 2014, 26 (12), 3603. doi: 10.1021/cm501513n
-
[2]
(2) He, Z. C.; Zhong, C. M.; Su, S. J.; Xu, M.; Wu, H. B.; Cao, Y. Nat. Photonics 2012, 6 (9), 591. doi: 10.1038/nphoton.2012.190
-
[3]
(3) Chen, C. C.; Chang, W. H.; Yoshimura, K.; Ohya, K.; You, J.; Gao, J.; Hong, Z.; Yang, Y. Adv. Mater. 2014, 26 (32), 5670. doi: 10.1002/adma.201402072
-
[4]
(4) Yusoff, A. R. B. M.; Kim, D.; Kim, H. P.; Shneider, F. K.; Silva, W. J. D.; Jang, J. Energy Environ. Sci. 2015, 8, 303. doi: 10.1039/C4EE03048F
-
[5]
(5) Ma, H.; Yip, H. L.; Huang, F.; Jen, A. K. Y. Adv. Funct. Mater. 2010, 20, 1371. doi: 10.1002/adfm.200902236
-
[6]
(6) Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. Energy Environ. Sci. 2011, 4, 285. doi: 10.1039/C0EE00273A
-
[7]
(7) Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Adv. Mater. 2012, 24 (40), 5408. doi: 10.1002/adma. v24.40
-
[8]
(8) Turak, A. RSC Adv. 2013, 3, 6188. doi: 10.1039/c2ra22770c
-
[9]
(9) Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S.W.; Lai, T. H.; Reynolds, J. R.; So, F. Nat. Photonics 2012, 6 (2), 115. doi: 10.1038/nphoton.2011.317
-
[10]
(10) Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; ng, X.; Heeger, A. J. Adv. Mater. 2006, 18 (5), 572. doi: 10.1002/adma.200501825
-
[11]
(11) Girotto, C.; Voroshazi, E.; Cheyns, D.; Heremans, P.; Rand, B. P. ACS Appl. Mater. Interface 2011, 3 (9), 3244. doi: 10.1021/am200729k
-
[12]
(12) Jørgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Adv. Mater. 2012, 24 (5), 580. doi: 10.1002/adma.201104187
-
[13]
(13) Sun, Y. M.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; ng, X.; Roy, A.; Heeger, A. J. Adv. Mater. 2011, 23 (19), 2226. doi: 10.1002/adma.v23.19
-
[14]
(14) Zilberberg, K.; Gharbi, H.; Behrendt, A.; Trost, S.; Riedl, T. ACS Appl. Mater. Interface 2012, 4 (3), 1164. doi: 10.1021/am201825t
-
[15]
(15) Steirer, K. X.; Ndione, P. F.; Widjonarko, N. E.; Lloyd, M. T.; Meyer, J.; Ratcliff, E. L.; Kahn, A.; Armstrong, N. R.; Curtis, C. J.; Ginley, D. S.; Berry, J. J.; Olson, D. C. Adv. Energy Mater. 2011, 1 (5), 813. doi: 10.1002/aenm.201100234
-
[16]
(16) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13 (1), 85. doi: 10.1002/adfm.200390011
-
[17]
(17) Krebs, F. C.; Sondergaard. R.; Jørgensen. M. Sol. Energy Mater. Sol. Cells 2011, 95 (5), 1348. doi: 10.1016/j.solmat.2010.11.007
-
[18]
(18) Guo, F.; Zhu, X. D.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.; Spallek, S.; Butz, B.; Spiecker, E.; Ameri, T.; Li, N.; Kubis, P.; Guldi, D. M.; Matt, G. J.; Brabec, C. J. Adv. Energy Mater. 2013, 3 (8), 1062. doi: 10.1002/aenm. v3.8
-
[19]
(19) Sarkar, S.; Culp, J. H.; Whyland, J. T.; Garvan, M.; Misra, V. Org. Electron. 2010, 11 (12), 1896. doi: 10.1016/j.orgel.2010.08.020
-
[20]
(20) Potscavage, W. J.; Yoo, S.; Domercq, B.; Kippelen, B. Appl. Phys. Lett. 2007, 90 (25), 253511. doi: 10.1063/1.2751108
-
[21]
(21) Diacon, A.; Derue, L.; Lecourtier, C.; Dautel, O.; Wantz, G.; Hudhomme, P. J. Mater. Chem. C 2014, 2, 7163. doi: 10.1039/C4TC01178C
-
[22]
(22) Kim, H. J.; Han, A. R.; Cho, C. H.; Kang, H.; Cho, H. H.; Lee, M. Y.; Frechet, J. M. J.; Oh, J. H.; Kim, B. J. Chem. Mater. 2012, 24 (1), 215. doi: 10.1021/cm203058p
-
[23]
(23) Dang, M. T.; Cantú-Valle, J.; Hirsch, L.; Wantz, G. Eur. Phys. J. -Appl. Phys. 2013, 63 (3), 30201. doi: 10.1051/epjap/2013120371
-
[24]
(24) Murase, S.; Yang, Y. Adv. Mater. 2012, 24 (18), 2459. doi: 10.1002/adma.201104771
-
[25]
(25) Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X. N.; Janssen, R. A. J. J. Phys. Chem. B 2005, 109, 9505. doi: 10.1021/jp050745x
-
[26]
(26) Li, W.W.; Hendriks, K. H. Furlan, A.; Roelofs, W. S. C.; Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2013, 135 (50), 18942. doi: 10.1021/ja4101003
-
[27]
(27) Dang, M. T.; Hirsch, L.; Wantz, G. Adv. Mater. 2011, 23 (31), 3597. doi: 10.1002/adma.201100792
-
[28]
(28) Gilot, J.; Barbu, I.; Wienk, M. M.; Janssen, R. A. J. Appl. Phys. Lett. 2007, 91 (11), 113520. doi: 10.1063/1.2784961
-
[29]
(29) Jeon, S. O.; Lee, J. Y. Sol. Energy Mater. Sol. Cells 2011, 95 (4), 1102. doi: 10.1016/j.solmat.2010.12.022
-
[30]
(30) Jeon, S. O.; Lee, J. Y. Sol. Energy Mater. Sol. Cells 2012, 101 (0), 160. doi: 10.1016/j.solmat.2012.01.036
-
[31]
(31) Norrman, K.; Madsen, M. V.; Gevorgyan, S. A.; Krebs, F. C. J. Am. Chem. Soc. 2010, 132 (47), 16883. doi: 10.1021/ja106299g
-
[32]
(32) Zhao, J.; Swinnen, A.; Van Assche, G.; Manca, J.; Vanderzande, D.; Mele, B. V. J. Phys. Chem. B 2009, 113 (6), 1587. doi: 10.1021/jp804151a
-
[1]
-
-
-
[1]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[2]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[3]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088
-
[4]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[5]
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082
-
[6]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[7]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[8]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[9]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[10]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[11]
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
-
[12]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[13]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[14]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[15]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[16]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[17]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[18]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[19]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085
-
[20]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[1]
Metrics
- PDF Downloads(258)
- Abstract views(649)
- HTML views(33)